Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS Institutional Research Information System - OPENBS Open Archive UniBS
Objective: Anti-synthetase syndrome (ASSD) is a rare systemic autoimmune rheumatic disease (SARD) with significant heterogeneity and no shared classification criteria. We aimed to identify clinical and serological features associated with ASSD that may be suitable for inclusion in the data-driven classification criteria for ASSD.
Methods: We utilized a large, international, multi-center "Classification Criteria for Anti-synthetase Syndrome" (CLASS) project database, which includes both ASSD patients and controls with mimicking conditions, namely SARDs and/or interstitial lung disease (ILD). The local diagnoses of ASSD and controls were confirmed by project team members. We employed univariable logistic regression and multivariable Ridge regression to evaluate clinical and serological features associated with an ASSD diagnosis in a randomly selected subset of the cohort.
Results: Our analysis included 948 ASSD cases and 1077 controls. Joint, muscle, lung, skin, and cardiac involvement were more prevalent in ASSD than in controls. Specific variables associated with ASSD included arthritis, diffuse myalgia, muscle weakness, muscle enzyme elevation, ILD, mechanic's hands, secondary pulmonary hypertension due to ILD, Raynaud phenomenon, and unexplained fever. In terms of serological variables, Jo-1 and non-Jo-1 anti-synthetase autoantibodies, antinuclear antibodies with cytoplasmic pattern, and anti-Ro52 autoantibodies were associated with ASSD. In contrast, isolated arthralgia, dysphagia, electromyography/MRI/muscle biopsy findings suggestive of myopathy, inflammatory rashes, myocarditis, and pulmonary arterial hypertension did not differentiate between ASSD and controls or were inversely associated with ASSD.
Conclusion: We identified key clinical and serological variables associated with ASSD, which will help clinicians and offer insights into the development of data-driven classification criteria for ASSD.
Clinical Characteristics of Anti-Synthetase Syndrome: Analysis from the CLASS project
Objective: Anti-synthetase syndrome (ASSD) is a rare systemic autoimmune rheumatic disease (SARD) with significant heterogeneity and no shared classification criteria. We aimed to identify clinical and serological features associated with ASSD that may be suitable for inclusion in the data-driven classification criteria for ASSD.
Methods: We utilized a large, international, multi-center "Classification Criteria for Anti-synthetase Syndrome" (CLASS) project database, which includes both ASSD patients and controls with mimicking conditions, namely SARDs and/or interstitial lung disease (ILD). The local diagnoses of ASSD and controls were confirmed by project team members. We employed univariable logistic regression and multivariable Ridge regression to evaluate clinical and serological features associated with an ASSD diagnosis in a randomly selected subset of the cohort.
Results: Our analysis included 948 ASSD cases and 1077 controls. Joint, muscle, lung, skin, and cardiac involvement were more prevalent in ASSD than in controls. Specific variables associated with ASSD included arthritis, diffuse myalgia, muscle weakness, muscle enzyme elevation, ILD, mechanic's hands, secondary pulmonary hypertension due to ILD, Raynaud phenomenon, and unexplained fever. In terms of serological variables, Jo-1 and non-Jo-1 anti-synthetase autoantibodies, antinuclear antibodies with cytoplasmic pattern, and anti-Ro52 autoantibodies were associated with ASSD. In contrast, isolated arthralgia, dysphagia, electromyography/MRI/muscle biopsy findings suggestive of myopathy, inflammatory rashes, myocarditis, and pulmonary arterial hypertension did not differentiate between ASSD and controls or were inversely associated with ASSD.
Conclusion: We identified key clinical and serological variables associated with ASSD, which will help clinicians and offer insights into the development of data-driven classification criteria for ASSD.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/615343
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Citazioni
0
ND
ND
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.