The structural and functional alterations of microvessels are detected because of physiological aging and in several cardiometabolic diseases, including hypertension, diabetes, and obesity. The small resistance arteries of these patients show an increase in the media or total wall thickness to internal lumen diameter ratio (MLR or WLR), often accompanied by endothelial dysfunction. For decades, micromyography has been considered as a gold standard method for evaluating microvascular structural alterations through the measurement of MLR or WLR of subcutaneous small vessels dissected from tissue biopsies. Micromyography is the most common and reliable method for assessing microcirculatory endothelial function ex vivo, while strain-gauge venous plethysmography is considered the reference technique for in vivo studies. Recently, several noninvasive methods have been proposed to extend the microvasculature evaluation to a broader range of patients and clinical settings. Scanning laser Doppler flowmetry and adaptive optics are increasingly used to estimate the WLR of retinal arterioles. Microvascular endothelial function may be evaluated in the retina by flicker light stimulus, in the finger by tonometric approaches, or in the cutaneous or sublingual tissues by laser Doppler flowmetry or intravital microscopy. The main limitation of these techniques is the lack of robust evidence on their prognostic value, which currently reduces their widespread use in daily clinical practice. Ongoing and future studies will overcome this issue, hopefully moving the noninvasive assessment of the microvascular function and structure from bench to bedside.

New Noninvasive Methods to Evaluate Microvascular Structure and Function

Rizzoni D.;Rosei C. A.;De Ciuceis C.;
2022-01-01

Abstract

The structural and functional alterations of microvessels are detected because of physiological aging and in several cardiometabolic diseases, including hypertension, diabetes, and obesity. The small resistance arteries of these patients show an increase in the media or total wall thickness to internal lumen diameter ratio (MLR or WLR), often accompanied by endothelial dysfunction. For decades, micromyography has been considered as a gold standard method for evaluating microvascular structural alterations through the measurement of MLR or WLR of subcutaneous small vessels dissected from tissue biopsies. Micromyography is the most common and reliable method for assessing microcirculatory endothelial function ex vivo, while strain-gauge venous plethysmography is considered the reference technique for in vivo studies. Recently, several noninvasive methods have been proposed to extend the microvasculature evaluation to a broader range of patients and clinical settings. Scanning laser Doppler flowmetry and adaptive optics are increasingly used to estimate the WLR of retinal arterioles. Microvascular endothelial function may be evaluated in the retina by flicker light stimulus, in the finger by tonometric approaches, or in the cutaneous or sublingual tissues by laser Doppler flowmetry or intravital microscopy. The main limitation of these techniques is the lack of robust evidence on their prognostic value, which currently reduces their widespread use in daily clinical practice. Ongoing and future studies will overcome this issue, hopefully moving the noninvasive assessment of the microvascular function and structure from bench to bedside.
File in questo prodotto:
File Dimensione Formato  
New non invasive.pdf

solo utenti autorizzati

Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 557.36 kB
Formato Adobe PDF
557.36 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/614889
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 22
social impact