Microcirculation and macrocirculation are tightly interconnected into a dangerous cross-link in hypertension. Small artery damage includes functional (vasoconstriction, impaired vasodilatation) and structural abnormalities (mostly inward eutrophic remodeling). These abnormalities are major determinants of the increase in total peripheral resistance and mean blood pressure (BP) in primary hypertension, which in the long term induces large artery stiffening. In turn, large artery stiffening increases central systolic and pulse pressures, which are further augmented by wave reflection in response to the structural alterations in small resistance arteries. Finally, transmission of high BP and flow pulsatility to small resistance arteries further induces functional and structural abnormalities, thus leading to increased total peripheral resistance and mean BP, thus perpetuating the vicious circle. Hyperpulsatility, in addition to higher mean BP, exaggerates cardiac, brain, and kidney damages and leads to cardiovascular, cerebral, and renal complications. The dangerous cross-link between micro and macrocirculation can be reversed into a virtuous one by ACE (angiotensin-converting enzyme) inhibitors, sartans, and calcium channel blockers. These three pharmacological classes are more potent than β-blockers and diuretics for reducing arterial stiffness and small artery remodeling. The same ranking was observed for their effectiveness at reducing left ventricular hypertrophy, preserving glomerular filtration rate, and preventing dementia, suggesting that they can act beyond brachial BP reduction, by breaking the micro/macrocirculation vicious circle.

Microcirculation and Macrocirculation in Hypertension: A Dangerous Cross-Link?

Agabiti-Rosei C.;Rizzoni D.
2022-01-01

Abstract

Microcirculation and macrocirculation are tightly interconnected into a dangerous cross-link in hypertension. Small artery damage includes functional (vasoconstriction, impaired vasodilatation) and structural abnormalities (mostly inward eutrophic remodeling). These abnormalities are major determinants of the increase in total peripheral resistance and mean blood pressure (BP) in primary hypertension, which in the long term induces large artery stiffening. In turn, large artery stiffening increases central systolic and pulse pressures, which are further augmented by wave reflection in response to the structural alterations in small resistance arteries. Finally, transmission of high BP and flow pulsatility to small resistance arteries further induces functional and structural abnormalities, thus leading to increased total peripheral resistance and mean BP, thus perpetuating the vicious circle. Hyperpulsatility, in addition to higher mean BP, exaggerates cardiac, brain, and kidney damages and leads to cardiovascular, cerebral, and renal complications. The dangerous cross-link between micro and macrocirculation can be reversed into a virtuous one by ACE (angiotensin-converting enzyme) inhibitors, sartans, and calcium channel blockers. These three pharmacological classes are more potent than β-blockers and diuretics for reducing arterial stiffness and small artery remodeling. The same ranking was observed for their effectiveness at reducing left ventricular hypertrophy, preserving glomerular filtration rate, and preventing dementia, suggesting that they can act beyond brachial BP reduction, by breaking the micro/macrocirculation vicious circle.
File in questo prodotto:
File Dimensione Formato  
Laurent et al_2022.pdf

solo utenti autorizzati

Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 440.28 kB
Formato Adobe PDF
440.28 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/614888
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 20
  • Scopus 61
  • ???jsp.display-item.citation.isi??? 57
social impact