Fiber orientation is of paramount importance for the design of fiber-reinforced concrete (FRC) structural elements, because it markedly influences the postcracking properties of such material. For this reason, structural codes introduce orientation factors which aim to correlate the real mechanical properties of the structural element with the ones determined from standard beams. Although the need of considering fiber orientation in design codes is commonly accepted, the orientation factors are still based on a limited number of research studies, raising the need to better determine fiber orientation to improve the current standards and support the design process of FRC elements. In this research, a steel fiber-reinforced concrete (SFRC) with a hybrid system of macro and microfibers is steered into a broad range of fiber orientations and cast into standard beams. Besides measuring the mechanical performance of these SFRC beams, three different methods for assessing fiber orientation are employed, namely electromagnetic induction, image analysis, and micro-computed tomography. The comparison between the outcomes of the different methods provides detailed information about the accuracy and suitability of each method, considering the corresponding domain of applicability at structural level. Finally, a critical review of the most common 2D and 3D orientation parameters found in literature is performed, and the equations are adapted to account for the hybrid system of fibers.

Fiber orientation and orientation factors in steel fiber-reinforced concrete beams with hybrid fibers: A critical review

Medeghini F.
;
Tiberti G.;Plizzari G. A.;Mark P.
2024-01-01

Abstract

Fiber orientation is of paramount importance for the design of fiber-reinforced concrete (FRC) structural elements, because it markedly influences the postcracking properties of such material. For this reason, structural codes introduce orientation factors which aim to correlate the real mechanical properties of the structural element with the ones determined from standard beams. Although the need of considering fiber orientation in design codes is commonly accepted, the orientation factors are still based on a limited number of research studies, raising the need to better determine fiber orientation to improve the current standards and support the design process of FRC elements. In this research, a steel fiber-reinforced concrete (SFRC) with a hybrid system of macro and microfibers is steered into a broad range of fiber orientations and cast into standard beams. Besides measuring the mechanical performance of these SFRC beams, three different methods for assessing fiber orientation are employed, namely electromagnetic induction, image analysis, and micro-computed tomography. The comparison between the outcomes of the different methods provides detailed information about the accuracy and suitability of each method, considering the corresponding domain of applicability at structural level. Finally, a critical review of the most common 2D and 3D orientation parameters found in literature is performed, and the equations are adapted to account for the hybrid system of fibers.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/614415
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact