: The benzoxaborinine scaffold, a homologue of benzoxaborole with an additional carbon atom in the boracycle, shows significant potential in developing new therapeutic agents. This study reports the synthesis, inhibition assays against four human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms, and anti-melanoma evaluation of 7-aryl(thio)ureido-substituted benzoxaborinines. Some derivatives, particularly compound 11, exhibited potent inhibitory activity (below 65 nM) against hCA IX and XII and stronger antiproliferative effects than SLC-0111 on human melanoma cells under hypoxia. Crystallographic studies of benzoxaborinine 3 adducts with hCA I and II demonstrated the binding mode of this chemotype, revealing that although both benzoxaborinine 3 and benzoxaborole 10 share a similar zinc-binding mode, the expanded ring in benzoxaborinine led to a different orientation within the active site. These findings suggest that benzoxaborinines hold promise for designing novel carbonic anhydrase inhibitors.

Benzoxaborinine, New Chemotype for Carbonic Anhydrase Inhibition: Ex Novo Synthesis, Crystallography, In Silico Studies, and Anti-Melanoma Cell Line Activity

Massardi, Maria-Luisa;Turati, Marta;Ronca, Roberto;
2024-01-01

Abstract

: The benzoxaborinine scaffold, a homologue of benzoxaborole with an additional carbon atom in the boracycle, shows significant potential in developing new therapeutic agents. This study reports the synthesis, inhibition assays against four human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms, and anti-melanoma evaluation of 7-aryl(thio)ureido-substituted benzoxaborinines. Some derivatives, particularly compound 11, exhibited potent inhibitory activity (below 65 nM) against hCA IX and XII and stronger antiproliferative effects than SLC-0111 on human melanoma cells under hypoxia. Crystallographic studies of benzoxaborinine 3 adducts with hCA I and II demonstrated the binding mode of this chemotype, revealing that although both benzoxaborinine 3 and benzoxaborole 10 share a similar zinc-binding mode, the expanded ring in benzoxaborinine led to a different orientation within the active site. These findings suggest that benzoxaborinines hold promise for designing novel carbonic anhydrase inhibitors.
File in questo prodotto:
File Dimensione Formato  
2024 JMedChem Vinum.pdf

gestori archivio

Tipologia: Full Text
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 9.54 MB
Formato Adobe PDF
9.54 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/611565
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact