We study a situation where a large number of people visit a popular venue (e.g., an art gallery, a mall, a theme park, or an exhibition) where points of interest are located (e.g., paintings, shops, attractions, or pavilions). Visitors have a maximum amount of time available for the overall experience. The points of interest have a limiting capacity and, whenever the turnout of visitors exceeds such capacity, queues and service disruptions occur. Given the maximum time available along with the time spent queuing, a selection of the points of interest may become necessary. Visitors usually act as autonomous decision-makers and do not take into account their interaction with other visitors. This leads to remarkable inefficiencies that could be, to a certain extent, overcome through a coordination of the paths and schedules of the different visitors. The resulting optimization problem is modeled as a Mixed-Integer Linear Program (MILP), where the goal is to minimize a weighted combination of the points of interest not selected and the time spent queuing. Computational results show the benefits that can be achieved by using the model proposed as a tool to support decision-making.

Coordinating paths and schedules of groups visiting multiple capacitated locations

Guastaroba G.;Morandi V.
;
Speranza M. G.
2024-01-01

Abstract

We study a situation where a large number of people visit a popular venue (e.g., an art gallery, a mall, a theme park, or an exhibition) where points of interest are located (e.g., paintings, shops, attractions, or pavilions). Visitors have a maximum amount of time available for the overall experience. The points of interest have a limiting capacity and, whenever the turnout of visitors exceeds such capacity, queues and service disruptions occur. Given the maximum time available along with the time spent queuing, a selection of the points of interest may become necessary. Visitors usually act as autonomous decision-makers and do not take into account their interaction with other visitors. This leads to remarkable inefficiencies that could be, to a certain extent, overcome through a coordination of the paths and schedules of the different visitors. The resulting optimization problem is modeled as a Mixed-Integer Linear Program (MILP), where the goal is to minimize a weighted combination of the points of interest not selected and the time spent queuing. Computational results show the benefits that can be achieved by using the model proposed as a tool to support decision-making.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/610965
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact