Recent data shows that alterations in the expression and/or activation of the vascular endothelial growth factor receptor 2 (VEGFR2) in high grade serous ovarian cancer (HGSOC) modulate tumor progression. However, controversial results have been obtained, showing that in some cases VEGFR2 inhibition can promote tumorigenesis and metastasis. Thus, it is urgent to better define the role of the VEGF/VEGFR2 system to understand/predict the effects of its inhibitors administered as anti-angiogenic in HGSOC. Here, we modulated the expression levels of VEGFR2 and analyzed the effects in two cellular models of HGSOC. VEGFR2 silencing (or its pharmacological inhibition) promote the growth and invasive potential of OVCAR3 cells in vitro and in vivo. Consistent with this, the low levels of VEGFR2 in OV7 cells are associated with more pronounced proliferative and motile phenotypes when compared to OVCAR3 cells, and VEGFR2 overexpression in OV7 cells inhibits cell growth. In vitro data confirmed that VEGFR2 silencing in OVCAR3 cells favors the acquisition of an invasive phenotype by loosening cell-ECM contacts, reducing the size and the signaling of focal adhesion contacts (FAs). This is translated into a reduced FAK activity at FAs, ECM-dependent alterations of mechanical forces through FAs and YAP nuclear translocation. Together, the data show that low expression, silencing or inhibition of VEGFR2 in HGSOC cells alter mechanotransduction and lead to the acquisition of a pro-proliferative/invasive phenotype which explains the need for a more cautious use of anti-VEGFR2 drugs in ovarian cancer.

The expression level of VEGFR2 regulates mechanotransduction, tumor growth and metastasis of high grade serous ovarian cancer cells

Elisabetta Grillo
;
Cosetta Ravelli;Michela Corsini;Mattia Domenichini;Maria Scamozzi;Daniela Zizioli;Davide Capoferri;Roberto Bresciani;Chiara Romani;Stefania Mitola
2024-01-01

Abstract

Recent data shows that alterations in the expression and/or activation of the vascular endothelial growth factor receptor 2 (VEGFR2) in high grade serous ovarian cancer (HGSOC) modulate tumor progression. However, controversial results have been obtained, showing that in some cases VEGFR2 inhibition can promote tumorigenesis and metastasis. Thus, it is urgent to better define the role of the VEGF/VEGFR2 system to understand/predict the effects of its inhibitors administered as anti-angiogenic in HGSOC. Here, we modulated the expression levels of VEGFR2 and analyzed the effects in two cellular models of HGSOC. VEGFR2 silencing (or its pharmacological inhibition) promote the growth and invasive potential of OVCAR3 cells in vitro and in vivo. Consistent with this, the low levels of VEGFR2 in OV7 cells are associated with more pronounced proliferative and motile phenotypes when compared to OVCAR3 cells, and VEGFR2 overexpression in OV7 cells inhibits cell growth. In vitro data confirmed that VEGFR2 silencing in OVCAR3 cells favors the acquisition of an invasive phenotype by loosening cell-ECM contacts, reducing the size and the signaling of focal adhesion contacts (FAs). This is translated into a reduced FAK activity at FAs, ECM-dependent alterations of mechanical forces through FAs and YAP nuclear translocation. Together, the data show that low expression, silencing or inhibition of VEGFR2 in HGSOC cells alter mechanotransduction and lead to the acquisition of a pro-proliferative/invasive phenotype which explains the need for a more cautious use of anti-VEGFR2 drugs in ovarian cancer.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0171933524000761-main.pdf

accesso aperto

Tipologia: Full Text
Licenza: PUBBLICO - Creative Commons 4.0
Dimensione 6.97 MB
Formato Adobe PDF
6.97 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/610705
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact