Self-powered photodetectors operating in the UV-visible-NIR window made of environmentally friendly, earth abundant, and cheap materials are appealing systems to exploit natural solar radiation without external power sources. In this study, we propose a new p-n junction nanostructure, based on a ZnO-Co3O4 core-shell nanowire (NW) system, with a suitable electronic band structure and improved light absorption, charge transport, and charge collection, to build an efficient UV-visible-NIR p-n heterojunction photodetector. Ultrathin Co3O4 films (in the range 1-15 nm) were sputter-deposited on hydrothermally grown ZnO NW arrays. The effect of a thin layer of the Al2O3 buffer layer between ZnO and Co3O4 was investigated, which may inhibit charge recombination, boosting device performance. The photoresponse of the ZnO-Al2O3-Co3O4 system at zero bias is 6 times higher compared to that of ZnO-Co3O4. The responsivity (R) and specific detectivity (D*) of the best device were 21.80 mA W-1 and 4.12 x 10(12) Jones, respectively. These results suggest a novel p-n junction structure to develop all-oxide UV-vis photodetectors based on stable, nontoxic, low-cost materials.

Self-Powered Photodetectors Based on Core–Shell ZnO–Co3O4 Nanowire Heterojunctions

Rigoni, Federica;
2019-01-01

Abstract

Self-powered photodetectors operating in the UV-visible-NIR window made of environmentally friendly, earth abundant, and cheap materials are appealing systems to exploit natural solar radiation without external power sources. In this study, we propose a new p-n junction nanostructure, based on a ZnO-Co3O4 core-shell nanowire (NW) system, with a suitable electronic band structure and improved light absorption, charge transport, and charge collection, to build an efficient UV-visible-NIR p-n heterojunction photodetector. Ultrathin Co3O4 films (in the range 1-15 nm) were sputter-deposited on hydrothermally grown ZnO NW arrays. The effect of a thin layer of the Al2O3 buffer layer between ZnO and Co3O4 was investigated, which may inhibit charge recombination, boosting device performance. The photoresponse of the ZnO-Al2O3-Co3O4 system at zero bias is 6 times higher compared to that of ZnO-Co3O4. The responsivity (R) and specific detectivity (D*) of the best device were 21.80 mA W-1 and 4.12 x 10(12) Jones, respectively. These results suggest a novel p-n junction structure to develop all-oxide UV-vis photodetectors based on stable, nontoxic, low-cost materials.
File in questo prodotto:
File Dimensione Formato  
ghamgosar-et-al-2019-self-powered-photodetectors-based-on-core-shell-zno-co3o4-nanowire-heterojunctions.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 3.67 MB
Formato Adobe PDF
3.67 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/609545
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 76
  • ???jsp.display-item.citation.isi??? ND
social impact