Nanostructured SnO2 is a promising material for the scalable production of portable gas sensors. To fully exploit their potential, these gas sensors need a faster recovery rate and higher sensitivity at room temperature than the current state of the art. Here we demonstrate a chemiresistive gas sensor based on vertical SnOx, nanopillars, capable of sensing < 5 ppm of H-2 at room temperature and 10 ppt at 230 degrees C. We test the sample both in vacuum and in air and observe an exceptional improvement in the performance compared to commercially available gas sensors. In particular, the recovery time for sensing NH3 at room temperature is more than one order of magnitude faster than a commercial SnO2 sensor. The sensor shows an unique combination of high sensitivity and fast recovery time, matching the requirements on materials expected to foster widespread use of portable and affordable gas sensors.

Improved recovery time and sensitivity to H2 and NH3 at room temperature with SnOx vertical nanopillars on ITO

Rigoni, F.;
2018-01-01

Abstract

Nanostructured SnO2 is a promising material for the scalable production of portable gas sensors. To fully exploit their potential, these gas sensors need a faster recovery rate and higher sensitivity at room temperature than the current state of the art. Here we demonstrate a chemiresistive gas sensor based on vertical SnOx, nanopillars, capable of sensing < 5 ppm of H-2 at room temperature and 10 ppt at 230 degrees C. We test the sample both in vacuum and in air and observe an exceptional improvement in the performance compared to commercially available gas sensors. In particular, the recovery time for sensing NH3 at room temperature is more than one order of magnitude faster than a commercial SnO2 sensor. The sensor shows an unique combination of high sensitivity and fast recovery time, matching the requirements on materials expected to foster widespread use of portable and affordable gas sensors.
File in questo prodotto:
File Dimensione Formato  
Darsiè_2018_SciRep.pdf

accesso aperto

Licenza: Non specificato
Dimensione 2.02 MB
Formato Adobe PDF
2.02 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/609487
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 22
  • ???jsp.display-item.citation.isi??? ND
social impact