We give different integral representations of the Lommel function $s_{\mu,\nu}(z)$ involving trigonometric and hypergeometric $_2F_1$ functions. By using classical results of P\'olya, we give the distribution of the zeros of $s_{\mu,\nu}(z)$ for certain regions in the plane $(\mu,\nu)$. Further, thanks to a well known relation between the functions $s_{\mu,\nu}(z)$ and the hypergeometric $ _1F_2$ function, we describe the distribution of the zeros of $_1F_2$ for specific values of its parameters.

Integral Representations and Zeros of the Lommel Function and the Hypergeometric $$_1F_2$$ Function

Zullo, Federico
2024-01-01

Abstract

We give different integral representations of the Lommel function $s_{\mu,\nu}(z)$ involving trigonometric and hypergeometric $_2F_1$ functions. By using classical results of P\'olya, we give the distribution of the zeros of $s_{\mu,\nu}(z)$ for certain regions in the plane $(\mu,\nu)$. Further, thanks to a well known relation between the functions $s_{\mu,\nu}(z)$ and the hypergeometric $ _1F_2$ function, we describe the distribution of the zeros of $_1F_2$ for specific values of its parameters.
File in questo prodotto:
File Dimensione Formato  
Final Lommel.pdf

accesso aperto

Descrizione: Results in Mathematics, Published: 30 August 2024, Volume 79, article number 236, (2024)
Tipologia: Full Text
Licenza: Creative commons
Dimensione 728.84 kB
Formato Adobe PDF
728.84 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/608205
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact