It was recently demonstrated that an O2 extraction reserve, as assessed by the near-infrared spectroscopy (NIRS)-derived deoxygenation signal ([HHb]), exists in the superficial region of vastus lateralis (VL) muscle during an occlusion performed at the end of a ramp-incremental test. However, it is unknown whether this reserve is present and/or different in magnitude in other portions and depths of the quadriceps muscles. We tested the hypothesis that an O2 extraction reserve would exist in other regions of this muscle but is greater in deep compared with more superficial portions. Superficial (VL-s) and deep VL (VL-d) as well as superficial rectus femoris (RF-s) were monitored by a combination of low- and high-power time-resolved (TRS) NIRS. During the occlusion immediately post-ramp-incremental test there was a significant overshoot in the [HHb] signal ( P < 0.05). However, the magnitude of this increase was greater in VL-d (93.2 ± 42.9%) compared with VL-s (55.0 ± 19.6%) and RF-s (47.8 ± 14.0%) ( P < 0.05). The present study demonstrated that an O2 extraction reserve exists in different pools of active muscle fibers of the quadriceps at the end of a ramp exercise to exhaustion. The greater magnitude in the reserve observed in the deeper portion of VL, however, suggests that this portion of muscle may present a greater surplus of oxygenated blood, which is likely due to a greater population of slow-twitch fibers. These findings add to the notion that the plateau in the [HHb] signal toward the end of a ramp-incremental exercise does not indicate the upper limit of O2 extraction. NEW & NOTEWORTHY Different portions of the quadriceps muscles exhibited an untapped O2 extraction reserve during a blood flow occlusion performed at the end of a ramp-incremental exercise. In the deeper portion of the vastus lateralis muscle, this reserve was greater compared with superficial vastus lateralis and rectus femoris. These data suggest that the O2 extraction reserve may be dependent on the vascular and/or oxidative capacities of the muscles.

Blood flow occlusion-related O2 extraction “reserve” is present in different muscles of the quadriceps but greater in deeper regions after ramp-incremental test

Iannetta D;
2018-01-01

Abstract

It was recently demonstrated that an O2 extraction reserve, as assessed by the near-infrared spectroscopy (NIRS)-derived deoxygenation signal ([HHb]), exists in the superficial region of vastus lateralis (VL) muscle during an occlusion performed at the end of a ramp-incremental test. However, it is unknown whether this reserve is present and/or different in magnitude in other portions and depths of the quadriceps muscles. We tested the hypothesis that an O2 extraction reserve would exist in other regions of this muscle but is greater in deep compared with more superficial portions. Superficial (VL-s) and deep VL (VL-d) as well as superficial rectus femoris (RF-s) were monitored by a combination of low- and high-power time-resolved (TRS) NIRS. During the occlusion immediately post-ramp-incremental test there was a significant overshoot in the [HHb] signal ( P < 0.05). However, the magnitude of this increase was greater in VL-d (93.2 ± 42.9%) compared with VL-s (55.0 ± 19.6%) and RF-s (47.8 ± 14.0%) ( P < 0.05). The present study demonstrated that an O2 extraction reserve exists in different pools of active muscle fibers of the quadriceps at the end of a ramp exercise to exhaustion. The greater magnitude in the reserve observed in the deeper portion of VL, however, suggests that this portion of muscle may present a greater surplus of oxygenated blood, which is likely due to a greater population of slow-twitch fibers. These findings add to the notion that the plateau in the [HHb] signal toward the end of a ramp-incremental exercise does not indicate the upper limit of O2 extraction. NEW & NOTEWORTHY Different portions of the quadriceps muscles exhibited an untapped O2 extraction reserve during a blood flow occlusion performed at the end of a ramp-incremental exercise. In the deeper portion of the vastus lateralis muscle, this reserve was greater compared with superficial vastus lateralis and rectus femoris. These data suggest that the O2 extraction reserve may be dependent on the vascular and/or oxidative capacities of the muscles.
File in questo prodotto:
File Dimensione Formato  
Blood flow occlusion related O2 extraction reserve in different muscles and depths, Iannetta.pdf

gestori archivio

Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 478.74 kB
Formato Adobe PDF
478.74 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/605270
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact