The oxygen uptake (V[Combining Dot Above]O2) at the respiratory compensation point (RCP) closely identifies with the maximal metabolic steady state. However, the power output (PO) at RCP cannot be determined from contemporary ramp-incremental exercise protocols. Purpose: This study aimed to test the efficacy of a "step-ramp-step" (SRS) cycling protocol for estimating the PO at RCP and the validity of RCP as a maximal metabolic steady-state surrogate. Methods: Ten heathy volunteers (5 women; age: 30 ± 7 yr; V[Combining Dot Above]O2max: 54 ± 6 mL·kg·min) performed in the following series: a moderate step transition to 100 W (MOD), ramp (30 W·min), and after 30 min of recovery, step transition to ~50% POpeak (HVY). Ventilatory and gas exchange data from the ramp were used to identify the V[Combining Dot Above]O2 at lactate threshold (LT) and RCP. The PO at LT was determined by the linear regression of the V[Combining Dot Above]O2 versus PO relationship after adjusting ramp data by the difference between the ramp PO at the steady-state V[Combining Dot Above]O2 from MOD and 100 W. Linear regression between the V[Combining Dot Above]O2-PO values associated with LT and HVY provided, by extrapolation, the PO at RCP. Participants then performed 30-min constant-power tests at the SRS-estimated RCP and 5% above this PO. The oxygen uptake (V[Combining Dot Above]O2) at the respiratory compensation point (RCP) closely identifies with the maximal metabolic steady state. However, the power output (PO) at RCP cannot be determined from contemporary ramp-incremental exercise protocols. Purpose: This study aimed to test the efficacy of a "step-ramp-step" (SRS) cycling protocol for estimating the PO at RCP and the validity of RCP as a maximal metabolic steady-state surrogate. Methods: Ten heathy volunteers (5 women; age: 30 ± 7 yr; V[Combining Dot Above]O2max: 54 ± 6 mL·kg·min) performed in the following series: a moderate step transition to 100 W (MOD), ramp (30 W·min), and after 30 min of recovery, step transition to ~50% POpeak (HVY). Ventilatory and gas exchange data from the ramp were used to identify the V[Combining Dot Above]O2 at lactate threshold (LT) and RCP. The PO at LT was determined by the linear regression of the V[Combining Dot Above]O2 versus PO relationship after adjusting ramp data by the difference between the ramp PO at the steady-state V[Combining Dot Above]O2 from MOD and 100 W. Linear regression between the V[Combining Dot Above]O2-PO values associated with LT and HVY provided, by extrapolation, the PO at RCP. Participants then performed 30-min constant-power tests at the SRS-estimated RCP and 5% above this PO. Results: All participants completed 30 min of constant-power exercise at the SRS-estimated RCP achieving steady-state V[Combining Dot Above]O2 of 3176 ± 595 mL·min that was not different (P = 0.80) from the ramp-identified RCP (3095 ± 570 mL·min) and highly consistent within participants (bias = -26 mL·min, r = 0.97, coefficient of variation = 2.3% ± 2.8%). At 5% above the SRS-estimated RCP, four participants could not complete 30 min and all, but two exhibited non-steady-state responses in blood lactate and V[Combining Dot Above]O2. Conclusions: In healthy individuals cycling at their preferred cadence, the SRS protocol and the RCP are capable of accurately predicting the PO associated with maximal metabolic steady state.

A “step-ramp-step” protocol to identify the maximal metabolic steady state

Iannetta D;
2020-01-01

Abstract

The oxygen uptake (V[Combining Dot Above]O2) at the respiratory compensation point (RCP) closely identifies with the maximal metabolic steady state. However, the power output (PO) at RCP cannot be determined from contemporary ramp-incremental exercise protocols. Purpose: This study aimed to test the efficacy of a "step-ramp-step" (SRS) cycling protocol for estimating the PO at RCP and the validity of RCP as a maximal metabolic steady-state surrogate. Methods: Ten heathy volunteers (5 women; age: 30 ± 7 yr; V[Combining Dot Above]O2max: 54 ± 6 mL·kg·min) performed in the following series: a moderate step transition to 100 W (MOD), ramp (30 W·min), and after 30 min of recovery, step transition to ~50% POpeak (HVY). Ventilatory and gas exchange data from the ramp were used to identify the V[Combining Dot Above]O2 at lactate threshold (LT) and RCP. The PO at LT was determined by the linear regression of the V[Combining Dot Above]O2 versus PO relationship after adjusting ramp data by the difference between the ramp PO at the steady-state V[Combining Dot Above]O2 from MOD and 100 W. Linear regression between the V[Combining Dot Above]O2-PO values associated with LT and HVY provided, by extrapolation, the PO at RCP. Participants then performed 30-min constant-power tests at the SRS-estimated RCP and 5% above this PO. The oxygen uptake (V[Combining Dot Above]O2) at the respiratory compensation point (RCP) closely identifies with the maximal metabolic steady state. However, the power output (PO) at RCP cannot be determined from contemporary ramp-incremental exercise protocols. Purpose: This study aimed to test the efficacy of a "step-ramp-step" (SRS) cycling protocol for estimating the PO at RCP and the validity of RCP as a maximal metabolic steady-state surrogate. Methods: Ten heathy volunteers (5 women; age: 30 ± 7 yr; V[Combining Dot Above]O2max: 54 ± 6 mL·kg·min) performed in the following series: a moderate step transition to 100 W (MOD), ramp (30 W·min), and after 30 min of recovery, step transition to ~50% POpeak (HVY). Ventilatory and gas exchange data from the ramp were used to identify the V[Combining Dot Above]O2 at lactate threshold (LT) and RCP. The PO at LT was determined by the linear regression of the V[Combining Dot Above]O2 versus PO relationship after adjusting ramp data by the difference between the ramp PO at the steady-state V[Combining Dot Above]O2 from MOD and 100 W. Linear regression between the V[Combining Dot Above]O2-PO values associated with LT and HVY provided, by extrapolation, the PO at RCP. Participants then performed 30-min constant-power tests at the SRS-estimated RCP and 5% above this PO. Results: All participants completed 30 min of constant-power exercise at the SRS-estimated RCP achieving steady-state V[Combining Dot Above]O2 of 3176 ± 595 mL·min that was not different (P = 0.80) from the ramp-identified RCP (3095 ± 570 mL·min) and highly consistent within participants (bias = -26 mL·min, r = 0.97, coefficient of variation = 2.3% ± 2.8%). At 5% above the SRS-estimated RCP, four participants could not complete 30 min and all, but two exhibited non-steady-state responses in blood lactate and V[Combining Dot Above]O2. Conclusions: In healthy individuals cycling at their preferred cadence, the SRS protocol and the RCP are capable of accurately predicting the PO associated with maximal metabolic steady state.
File in questo prodotto:
File Dimensione Formato  
A step ramp step protocol to identify the maximal metabolic steady state, Iannetta.pdf

gestori archivio

Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 568.96 kB
Formato Adobe PDF
568.96 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/605261
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact