We describe the asymptotic behavior of positive solutions u 6 of the equation - A u + au = 3u 5 - 6 in Q c R 3 with a homogeneous Dirichlet boundary condition. The function a is assumed to be critical in the sense of Hebey and Vaugon, and the functions u 6 are assumed to be an optimizing sequence for the Sobolev inequality. Under a natural nondegeneracy assumption we derive the exact rate of the blow-up and the location of the concentration point, thereby proving a conjecture of Brezis and Peletier (1989). Similar results are also obtained for solutions of the equation - A u + ( a + E V ) u = 3u 5 in Q .

Blow-up of solutions of critical elliptic equations in three dimensions

Kovarik, Hynek
2024-01-01

Abstract

We describe the asymptotic behavior of positive solutions u 6 of the equation - A u + au = 3u 5 - 6 in Q c R 3 with a homogeneous Dirichlet boundary condition. The function a is assumed to be critical in the sense of Hebey and Vaugon, and the functions u 6 are assumed to be an optimizing sequence for the Sobolev inequality. Under a natural nondegeneracy assumption we derive the exact rate of the blow-up and the location of the concentration point, thereby proving a conjecture of Brezis and Peletier (1989). Similar results are also obtained for solutions of the equation - A u + ( a + E V ) u = 3u 5 in Q .
File in questo prodotto:
File Dimensione Formato  
FKK-Anal-PDE.pdf

accesso aperto

Licenza: Copyright dell'editore
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/602566
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact