Background: Parkinson’s disease (PD) is an advancing neurodegenerative disorder characterized by spinal anomalies and muscular weakness, which may restrict daily functional capacities. A gender-focused examination of these effects could provide valuable insights into customized rehabilitation strategies for both sexes. Purpose: This study investigates the influence of spinal alignment on lower-limb function during the sit-to-stand (STS) movement in patients with Parkinson’s disease compared to healthy individuals. Methods: A cross-sectional study was conducted with 43 consecutive patients with PD (25 males and 18 females; average age 73.7 ± 7.1 years) and 42 healthy controls (22 males and 20 females; average age 69.8 ± 6.0 years). Assessments included the International Physical Activity Questionnaire (IPAQ), Hoehn and Yahr staging, and measurements of vertical deviations from several spinal landmarks. Lower-limb muscle power during the STS task was evaluated using the Muscle Quality Index (MQI). Results: Both absolute (Watts) and relative (Watts/Kg) muscle power in the lower limbs were notably decreased in the PD group compared to the control group. Within the PD cohort, muscle power showed a negative relationship with age and a positive association with the degree of lumbar lordosis (PL-L3). Importantly, gender-specific analysis revealed that male patients with PD had significantly higher lower-limb muscle power compared to female patients with PD, highlighting the need for gender-tailored therapeutic approaches. Conclusions: The findings suggest that preserving lumbar lordosis is crucial for maintaining effective lower-limb muscle biomechanics in individuals with Parkinson’s disease.

Gender-Specific Differences in Spinal Alignment and Muscle Power in Patients with Parkinson’s Disease

Bissolotti L.;Rota M.;Calza S.;
2024-01-01

Abstract

Background: Parkinson’s disease (PD) is an advancing neurodegenerative disorder characterized by spinal anomalies and muscular weakness, which may restrict daily functional capacities. A gender-focused examination of these effects could provide valuable insights into customized rehabilitation strategies for both sexes. Purpose: This study investigates the influence of spinal alignment on lower-limb function during the sit-to-stand (STS) movement in patients with Parkinson’s disease compared to healthy individuals. Methods: A cross-sectional study was conducted with 43 consecutive patients with PD (25 males and 18 females; average age 73.7 ± 7.1 years) and 42 healthy controls (22 males and 20 females; average age 69.8 ± 6.0 years). Assessments included the International Physical Activity Questionnaire (IPAQ), Hoehn and Yahr staging, and measurements of vertical deviations from several spinal landmarks. Lower-limb muscle power during the STS task was evaluated using the Muscle Quality Index (MQI). Results: Both absolute (Watts) and relative (Watts/Kg) muscle power in the lower limbs were notably decreased in the PD group compared to the control group. Within the PD cohort, muscle power showed a negative relationship with age and a positive association with the degree of lumbar lordosis (PL-L3). Importantly, gender-specific analysis revealed that male patients with PD had significantly higher lower-limb muscle power compared to female patients with PD, highlighting the need for gender-tailored therapeutic approaches. Conclusions: The findings suggest that preserving lumbar lordosis is crucial for maintaining effective lower-limb muscle biomechanics in individuals with Parkinson’s disease.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/600686
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact