Additive Manufacturing (AM) technology allows the production of complex geometries such as lattice and foam structures, finding diverse applications in the automotive, biomedical, and aerospace industries. Metal Additive Manufacturing (MAM) is a technology capable of producing metallic components layer by layer. One of the most used technologies is Powder Bed Fusion (PBF), where metal powder is melted using a source of energy, either Laser or Electron Beam. It can be further classified into Laser Powder Bed Fusion (L-PBF) and Electron Beam Powder Bed Fusion (EB-PBF). The alloys processed and studied in the literature through AM are still somewhat limited. The most commonly used alloys are stainless steel and ferrous alloys, titanium alloys, nickel-based alloys, aluminum alloys, and cobalt alloys. Lattice structures produced through AM were extensively explored in the literature due to their beneficial characteristics. The manufacturing process introduces defects typically categorized as geometry and dimension, surface quality, and porosity defects. As these defects significantly impact the behavior of lattice structures, the manufactured components may not exhibit the expected properties. The focus of this doctoral research thesis is to fill the gaps in the literature concerning the effective mechanical behavior and the design of lattice structures manufactured with L-PBF and EB-PBF technologies, utilizing Co-Cr-Mo alloy, Ti-6Al-4V alloy, and 17-4 PH SS metal powders. Specifically, the main objective was centered on the production and characterization of metallic lattice structures with varying unit cell orientations, building angles, and connections with the solid part. For each alloy studied, the mechanical and microstructural characterizations were conducted. Compression tests were performed on the lattices to understand the influence of cell orientation, building angle, and the influence of the connection with the solid part. Microhardness measurements were taken, and the fracture mechanisms of these structures were analyzed. Moreover, heat treatment was carried out, in particular on 17-4 PH SS lattice, to study its influence on microstructural and mechanical properties. In conclusion, this thesis was dedicated to the production and characterization of innovative metallic lattice structures using L-PBF and EB-PBF. Each studied alloy exhibited different features, issues, and applications.
La tecnologia di Additive Manufacturing (AM) consente la produzione di geometrie complesse come strutture lattice e schiume metalliche, trovando diverse applicazioni nei settori automobilistico, biomedicale e aerospaziale. Il Metal Additive Manufacturing (MAM) è una tecnologia in grado di produrre componenti metallici strato dopo strato. Una delle tecnologie più utilizzate è la Powder Bed Fusion (PBF), in cui la polvere metallica viene fusa utilizzando una sorgente di energia, laser o fascio di elettroni. Può essere ulteriormente classificata in Laser Powder Bed Fusion (L-PBF) e Electron Beam Powder Bed Fusion (EB-PBF). Le leghe processate e studiate nella letteratura attraverso l'AM sono ancora in qualche modo limitate. Le leghe più comunemente utilizzate sono l'acciaio inossidabile, le leghe ferrose, le leghe di titanio, le leghe a base di nichel, le leghe di alluminio e le leghe di cobalto. Le strutture lattice prodotte attraverso l'AM sono state ampiamente esplorate nella letteratura a causa delle loro caratteristiche vantaggiose. Il processo di produzione introduce difetti generalmente categorizzati come difetti di geometria e dimensione, qualità della superficie e difetti di porosità. Poiché questi difetti influenzano significativamente il comportamento delle strutture lattice, i componenti prodotti potrebbero non mostrare le proprietà attese. L'obiettivo di questa tesi di ricerca di dottorato, è colmare le lacune nella letteratura riguardanti il comportamento meccanico efficace e il design di strutture lattice prodotte con le tecnologie L-PBF ed EB-PBF, utilizzando polveri metalliche di lega Co-Cr-Mo, lega Ti-6Al-4V e acciaio inossidabile 17-4 PH. In particolare, l'obiettivo principale era centrato sulla produzione e caratterizzazione di strutture lattice metalliche con orientamenti variabili delle celle, angoli di costruzione differenti e connessioni con una parte solida. Per ciascuna lega studiata, sono state condotte caratterizzazioni meccaniche e microstrutturali. Sono stati eseguiti test di compressione sulle strutture lattice per comprendere l'influenza dell'orientamento delle celle, dell'angolo di costruzione e della connessione con la parte solida. Sono state effettuate misurazioni di micro-durezza e sono stati analizzati i meccanismi di rottura di queste strutture. Inoltre, è stato effettuato un trattamento termico, in particolare sulle strutture lattice in 17-4 PH SS, per studiare la sua influenza sulle proprietà microstrutturali e meccaniche. In conclusione, questa tesi è stata dedicata alla produzione e caratterizzazione di innovative strutture lattice metalliche, utilizzando le tecnologie L-PBF ed EB-PBF. Ogni lega studiata ha mostrato caratteristiche, problematiche e applicazioni differenti.
Production process optimization and characterization of 3D printed metal products / Cantaboni, Francesco. - (2024 May 31).
Production process optimization and characterization of 3D printed metal products
Cantaboni, Francesco
2024-05-31
Abstract
Additive Manufacturing (AM) technology allows the production of complex geometries such as lattice and foam structures, finding diverse applications in the automotive, biomedical, and aerospace industries. Metal Additive Manufacturing (MAM) is a technology capable of producing metallic components layer by layer. One of the most used technologies is Powder Bed Fusion (PBF), where metal powder is melted using a source of energy, either Laser or Electron Beam. It can be further classified into Laser Powder Bed Fusion (L-PBF) and Electron Beam Powder Bed Fusion (EB-PBF). The alloys processed and studied in the literature through AM are still somewhat limited. The most commonly used alloys are stainless steel and ferrous alloys, titanium alloys, nickel-based alloys, aluminum alloys, and cobalt alloys. Lattice structures produced through AM were extensively explored in the literature due to their beneficial characteristics. The manufacturing process introduces defects typically categorized as geometry and dimension, surface quality, and porosity defects. As these defects significantly impact the behavior of lattice structures, the manufactured components may not exhibit the expected properties. The focus of this doctoral research thesis is to fill the gaps in the literature concerning the effective mechanical behavior and the design of lattice structures manufactured with L-PBF and EB-PBF technologies, utilizing Co-Cr-Mo alloy, Ti-6Al-4V alloy, and 17-4 PH SS metal powders. Specifically, the main objective was centered on the production and characterization of metallic lattice structures with varying unit cell orientations, building angles, and connections with the solid part. For each alloy studied, the mechanical and microstructural characterizations were conducted. Compression tests were performed on the lattices to understand the influence of cell orientation, building angle, and the influence of the connection with the solid part. Microhardness measurements were taken, and the fracture mechanisms of these structures were analyzed. Moreover, heat treatment was carried out, in particular on 17-4 PH SS lattice, to study its influence on microstructural and mechanical properties. In conclusion, this thesis was dedicated to the production and characterization of innovative metallic lattice structures using L-PBF and EB-PBF. Each studied alloy exhibited different features, issues, and applications.File | Dimensione | Formato | |
---|---|---|---|
Tesi finale dottorato XXXVI Ciclo.pdf
accesso aperto
Descrizione: Tesi
Tipologia:
Tesi di dottorato
Dimensione
5.89 MB
Formato
Adobe PDF
|
5.89 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.