In recent decades, climate change and excessive land exploitation have exacerbated issues related to stormwater management, especially in urban areas. Increased temperatures and changes in rainfall patterns, coupled with soil sealing, have altered the natural hydrological cycle, increasing the risk of flooding from extreme weather events. Traditional urban drainage systems, designed for past climate conditions, struggle to handle these events, leading to emergencies and considerable material damage. Faced with these challenges, sustainable water resource management and the design of resilient urban infrastructures become crucial. Public administrations are therefore promoting urban design that facilitates water management and respects the hydrological cycle, through the increase of green spaces and permeable surfaces. In this context, decentralized drainage systems such as green roofs and porous pavements are becoming popular strategies to mitigate the impacts of urbanization, also contributing to biodiversity conservation and urban aesthetics. One of the most effective and low-cost solutions gaining particular success are raingardens, or vegetated green areas designed to capture, filter, and slow down surface runoff through engineered soil layers. The treated runoff can then be gradually released into conventional drainage systems or infiltrate into the ground, helping to restore groundwater levels. This study investigated the use of raingardens with two different approaches and methods. The first addresses issues related to the post-installation management and maintenance of raingardens. The proper functioning of these systems largely depends on the quality and frequency of maintenance interventions. For this purpose, a study was developed on 15 typical columns representing 15 mini-raingardens to test the reliability of low-cost sensors in identifying three common health conditions of the biofilter: normal, malfunction due to preferential flow paths, and operation with surface clogging. The installed sensors were able to distinguish the behaviour of the three experimental column groups, providing data that reflect different reactions to the water infiltration process, demonstrating their effectiveness in detecting malfunctions through the measurement of soil moisture and water volumetric content. The second part of the study focuses on a numerical modelling work conducted using the hydraulic modelling software SWMM to evaluate the effectiveness of raingardens in mitigating the negative impact of climate change and urbanization on an urban catchment scale on an Italian case study. To this end, various urban de-paving scenarios and different meteorological events were simulated, under non-stationary climate conditions, to assess their effectiveness also considering the effects of future climate changes. The simulations showed that raingardens are effective for events with low return periods, recording a reduction in peak flows up to 23% and in discharged volumes up to 17.3% on a single event scale. In continuous simulations, the benefits of implementing raingardens in terms of reducing surface runoff are accentuated, reaching a reduction of up to 75%. The results aim to provide concrete evidence supporting the effectiveness of green infrastructure in mitigating issues arising from climate change and urbanization.
Negli ultimi decenni, il cambiamento climatico e l’eccessivo sfruttamento del suolo hanno accentuato le problematiche legate alla gestione delle acque meteoriche, specialmente in ambito urbano. L’aumento delle temperature e le alterazioni dei regimi di pioggia, uniti all’impermeabilizzazione del suolo, hanno alterato il naturale ciclo idrologico, aumentando il rischio di allagamenti generati da eventi meteorologici estremi. I sistemi di drenaggio urbano tradizionali, progettati per condizioni climatiche passate, faticano a gestire tali eventi, portando a situazioni di emergenza e danni materiali significativi. Di fronte a queste sfide, la gestione sostenibile delle risorse idriche e la progettazione di infrastrutture urbane resilienti diventano cruciali. Le amministrazioni pubbliche stanno pertanto promuovendo un design urbano che favorisca la gestione dell’acqua e il rispetto del ciclo idrologico, attraverso l'aumento degli spazi verdi e delle superfici permeabili. In questo contesto, i sistemi di drenaggio decentralizzati come i tetti verdi e le pavimentazioni porose stanno diventando strategie popolari per mitigare gli impatti dell’urbanizzazione, contribuendo anche alla conservazione della biodiversità e all'estetica urbana. Una delle soluzioni più efficaci e a basso costo che sta riscuotendo particolare successo sono i raingardens, ovvero aree verdi vegetate progettate per catturare, filtrare e rallentare il deflusso superficiale attraverso strati di terreno ingegnerizzati. Il deflusso trattato può poi essere rilasciato gradualmente nei sistemi di drenaggio convenzionali o infiltrarsi nel terreno, contribuendo a ripristinare i livelli di falda. In questo studio, l'uso dei raingarden è stato indagato con due diversi approcci e modalità. Il primo affronta le problematiche legate alla gestione e manutenzione dei raingardens post-installazione. Il corretto funzionamento di questi sistemi infatti dipende in gran parte dalla qualità e frequenza degli interventi di manutenzione che vengono svolti. A questo scopo, è stato sviluppato uno studio su 15 colonne tipo rappresentanti 15 mini-raingarden per testare l'affidabilità dei sensori economici nell'identificare tre comuni condizioni di salute del biofiltro: normale, malfunzionamento dovuto a percorsi preferenziali di flusso e funzionamento con occlusione superficiale. I sensori installati sono stati in grado di distinguere il comportamento dei tre gruppi di colonne sperimentali, fornendo dati che riflettono le diverse reazioni al processo di infiltrazione dell’acqua, dimostrando la loro efficacia nel rilevare malfunzionamenti attraverso la misurazione dell’umidità del suolo e del contenuto volumetrico di acqua. La seconda parte dello studio si concentra invece su un lavoro di modellazione numerica condotto utilizzando il software di modellazione idraulica SWMM per valutare l'efficacia dei raingarden nel mitigare l'impatto negativo dei cambiamenti climatici e dell'urbanizzazione a scala di bacino urbano su un caso studio italiano. A tal fine sono stati simulati diversi scenari di depavimentazione urbana e diversi eventi meteorici, in condizioni climatiche non stazionare, per valutare la loro efficacia anche in considerazione degli effetti dei cambiamenti climatici futuri. Le simulazioni condotte hanno evidenziato che i raingarden risultano efficaci per eventi con tempi di ritorno bassi, registrando una riduzione dei picchi di piena fino al 23% e dei volumi scaricati fino al 17.3% a scala di singolo evento. Nelle simulazioni in continuo i vantaggi apportati dall’implementazione dei raingarden in termini di riduzione del deflusso superficiale si accentuano, arrivando ad una riduzione fino al 75%. I risultati ottenuti mirano a fornire evidenze concrete a sostegno dell'efficacia dell'infrastruttura verde nel mitigare le problematiche derivanti dai cambiamenti climatici e dall'urbanizzazione.
SUSTAINABLE URBAN DRAINAGE SYSTEMS: ASSESSING RAINGARDEN HYDRAULIC BEHAVIOUR USING LOW-COST ELECTRONIC SENSOR TECHNOLOGY AND NUMERICAL MODELLING / Dada, Arianna. - (2024 May 31).
SUSTAINABLE URBAN DRAINAGE SYSTEMS: ASSESSING RAINGARDEN HYDRAULIC BEHAVIOUR USING LOW-COST ELECTRONIC SENSOR TECHNOLOGY AND NUMERICAL MODELLING
Dada, Arianna
2024-05-31
Abstract
In recent decades, climate change and excessive land exploitation have exacerbated issues related to stormwater management, especially in urban areas. Increased temperatures and changes in rainfall patterns, coupled with soil sealing, have altered the natural hydrological cycle, increasing the risk of flooding from extreme weather events. Traditional urban drainage systems, designed for past climate conditions, struggle to handle these events, leading to emergencies and considerable material damage. Faced with these challenges, sustainable water resource management and the design of resilient urban infrastructures become crucial. Public administrations are therefore promoting urban design that facilitates water management and respects the hydrological cycle, through the increase of green spaces and permeable surfaces. In this context, decentralized drainage systems such as green roofs and porous pavements are becoming popular strategies to mitigate the impacts of urbanization, also contributing to biodiversity conservation and urban aesthetics. One of the most effective and low-cost solutions gaining particular success are raingardens, or vegetated green areas designed to capture, filter, and slow down surface runoff through engineered soil layers. The treated runoff can then be gradually released into conventional drainage systems or infiltrate into the ground, helping to restore groundwater levels. This study investigated the use of raingardens with two different approaches and methods. The first addresses issues related to the post-installation management and maintenance of raingardens. The proper functioning of these systems largely depends on the quality and frequency of maintenance interventions. For this purpose, a study was developed on 15 typical columns representing 15 mini-raingardens to test the reliability of low-cost sensors in identifying three common health conditions of the biofilter: normal, malfunction due to preferential flow paths, and operation with surface clogging. The installed sensors were able to distinguish the behaviour of the three experimental column groups, providing data that reflect different reactions to the water infiltration process, demonstrating their effectiveness in detecting malfunctions through the measurement of soil moisture and water volumetric content. The second part of the study focuses on a numerical modelling work conducted using the hydraulic modelling software SWMM to evaluate the effectiveness of raingardens in mitigating the negative impact of climate change and urbanization on an urban catchment scale on an Italian case study. To this end, various urban de-paving scenarios and different meteorological events were simulated, under non-stationary climate conditions, to assess their effectiveness also considering the effects of future climate changes. The simulations showed that raingardens are effective for events with low return periods, recording a reduction in peak flows up to 23% and in discharged volumes up to 17.3% on a single event scale. In continuous simulations, the benefits of implementing raingardens in terms of reducing surface runoff are accentuated, reaching a reduction of up to 75%. The results aim to provide concrete evidence supporting the effectiveness of green infrastructure in mitigating issues arising from climate change and urbanization.File | Dimensione | Formato | |
---|---|---|---|
PhDThesis_AriannaDada_def.pdf
accesso aperto
Descrizione: TESI
Tipologia:
Tesi di dottorato
Dimensione
11.62 MB
Formato
Adobe PDF
|
11.62 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.