Two interacting Rydberg atoms coupled to a waveguide realize a giant-atom platform that exhibits the controllable (phase-dependent) chirality where the direction of nonreciprocal photon scattering can be switched on demand, e.g., by the geometrical tuning of an external driving field. At variance with previous chiral setups, the simplified approach of our proposed platform arises from an optical implementation of the local phase difference between two coupling points of the Rydberg giant atom. Furthermore, employing two or more driving fields, this platform could also be used as a frequency converter with its efficiency exhibiting a strong asymmetry and being significantly enhanced via the chiral couplings. Our results suggest an extendable giant-atom platform that is both innovative and promising for chiral quantum optics and tunable frequency conversion in the optical domain.
Single-photon manipulations based on optically-controlled chiral couplings in waveguide structures of Rydberg giant atoms
Lei Du;M. Artoni;
2024-01-01
Abstract
Two interacting Rydberg atoms coupled to a waveguide realize a giant-atom platform that exhibits the controllable (phase-dependent) chirality where the direction of nonreciprocal photon scattering can be switched on demand, e.g., by the geometrical tuning of an external driving field. At variance with previous chiral setups, the simplified approach of our proposed platform arises from an optical implementation of the local phase difference between two coupling points of the Rydberg giant atom. Furthermore, employing two or more driving fields, this platform could also be used as a frequency converter with its efficiency exhibiting a strong asymmetry and being significantly enhanced via the chiral couplings. Our results suggest an extendable giant-atom platform that is both innovative and promising for chiral quantum optics and tunable frequency conversion in the optical domain.File | Dimensione | Formato | |
---|---|---|---|
https:arxiv.org:pdf:2312.12733.pdf
gestori archivio
Tipologia:
Documento in Pre-print
Licenza:
DRM non definito
Dimensione
246.35 kB
Formato
Adobe PDF
|
246.35 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.