Full Laboratory Automation is revolutionizing work habits in an increasing number of clinical microbiology facilities worldwide, generating huge streams of digital images for interpretation. Contextually, deep learning architectures are leading to paradigm shifts in the way computers can assist with difficult visual interpretation tasks in several domains. At the crossroads of these epochal trends, we present a system able to tackle a core task in clinical microbiology, namely the global interpretation of diagnostic bacterial culture plates, including presumptive pathogen identification. This is achieved by decomposing the problem into a hierarchy of complex subtasks and addressing them with a multi-network architecture we call DeepColony. Working on a large stream of clinical data and a complete set of 32 pathogens, the proposed system is capable of effectively assist plate interpretation with a surprising degree of accuracy in the widespread and demanding framework of Urinary Tract Infections. Moreover, thanks to the rich species-related generated information, DeepColony can be used for developing trustworthy clinical decision support services in laboratory automation ecosystems from local to global scale.DeepColony is a multi-level AI solution for the interpretation of bacterial culturing images in clinical microbiology laboratory automations. Here, the authors show it allows presumptive identification and quantitation of relevant pathogens at both colony- and plate-level.
Hierarchical AI enables global interpretation of culture plates in the era of digital microbiology
Signoroni, Alberto;Lombardi, Stefano;Savardi, Mattia;
2023-01-01
Abstract
Full Laboratory Automation is revolutionizing work habits in an increasing number of clinical microbiology facilities worldwide, generating huge streams of digital images for interpretation. Contextually, deep learning architectures are leading to paradigm shifts in the way computers can assist with difficult visual interpretation tasks in several domains. At the crossroads of these epochal trends, we present a system able to tackle a core task in clinical microbiology, namely the global interpretation of diagnostic bacterial culture plates, including presumptive pathogen identification. This is achieved by decomposing the problem into a hierarchy of complex subtasks and addressing them with a multi-network architecture we call DeepColony. Working on a large stream of clinical data and a complete set of 32 pathogens, the proposed system is capable of effectively assist plate interpretation with a surprising degree of accuracy in the widespread and demanding framework of Urinary Tract Infections. Moreover, thanks to the rich species-related generated information, DeepColony can be used for developing trustworthy clinical decision support services in laboratory automation ecosystems from local to global scale.DeepColony is a multi-level AI solution for the interpretation of bacterial culturing images in clinical microbiology laboratory automations. Here, the authors show it allows presumptive identification and quantitation of relevant pathogens at both colony- and plate-level.File | Dimensione | Formato | |
---|---|---|---|
s41467-023-42563-1 (2).pdf
accesso aperto
Tipologia:
Full Text
Licenza:
Copyright dell'editore
Dimensione
3.51 MB
Formato
Adobe PDF
|
3.51 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.