Introduction: Although neurofilaments are mainly expressed in large caliber myelinated axons, recent evidence supports the existence of a specific synaptic pool, where neurofilament light chain (NfL) has been proposed to stabilize NMDA receptor (NMDAR) at postsynaptic membrane through a direct interaction with the GluN1 subunit. Here, we assessed the expression and synaptic abundance of neurofilaments and their interaction with NMDAR in experimental α-synucleinopathy models. Methods: We used confocal imaging and biochemical approaches to confirm NMDAR-NfL interaction at synapses. Western blotting in purified fractions and co-immunoprecipitation assays were then performed to assess synaptic neurofilament expression and GluN1-NfL interaction in (i) α-synuclein pre-formed fibrils (α-syn PFF)-treated hippocampal neuronal cultures and (ii) mice intrastriatally injected with α-syn-PFF. Results: We identified the existence of a direct protein-protein interaction between NMDAR and NfL endogenously expressed in neurons. Our findings showed increased striatal GluN1-NfL interaction levels at early phases of α-syn PFF-treated mice compared to controls (NfL/GluN1 optical density: α-syn PFF 0.71 ± 0.04; controls 0.48 ± 0.03; t(9) = 4.67; p = 0.001). In agreement with this observation, we found that NfL levels are increased in striatal postsynaptic fractions of α-syn PFF-treated mice (normalized optical density: α-syn PFF 1.86 ± 0.14; controls 1.34 ± 0.13; t(18) = 2.70; p = 0.015). Conclusions: Our results demonstrate alterations of striatal synaptic neurofilament pool in α-synucleinopathy models and open the way to further investigations evaluating a potential role of neurofilament dysregulation in explaining glutamatergic synaptic dysfunction observed in α-synucleinopathies such as Parkinson's disease.

Synaptic Neurofilaments and GluN1-Neurofilament Light Chain Interaction in Experimental Models of α-Synucleinopathies

Imarisio A.;Pilotto A.;Padovani A.;Gardoni F.
2022-01-01

Abstract

Introduction: Although neurofilaments are mainly expressed in large caliber myelinated axons, recent evidence supports the existence of a specific synaptic pool, where neurofilament light chain (NfL) has been proposed to stabilize NMDA receptor (NMDAR) at postsynaptic membrane through a direct interaction with the GluN1 subunit. Here, we assessed the expression and synaptic abundance of neurofilaments and their interaction with NMDAR in experimental α-synucleinopathy models. Methods: We used confocal imaging and biochemical approaches to confirm NMDAR-NfL interaction at synapses. Western blotting in purified fractions and co-immunoprecipitation assays were then performed to assess synaptic neurofilament expression and GluN1-NfL interaction in (i) α-synuclein pre-formed fibrils (α-syn PFF)-treated hippocampal neuronal cultures and (ii) mice intrastriatally injected with α-syn-PFF. Results: We identified the existence of a direct protein-protein interaction between NMDAR and NfL endogenously expressed in neurons. Our findings showed increased striatal GluN1-NfL interaction levels at early phases of α-syn PFF-treated mice compared to controls (NfL/GluN1 optical density: α-syn PFF 0.71 ± 0.04; controls 0.48 ± 0.03; t(9) = 4.67; p = 0.001). In agreement with this observation, we found that NfL levels are increased in striatal postsynaptic fractions of α-syn PFF-treated mice (normalized optical density: α-syn PFF 1.86 ± 0.14; controls 1.34 ± 0.13; t(18) = 2.70; p = 0.015). Conclusions: Our results demonstrate alterations of striatal synaptic neurofilament pool in α-synucleinopathy models and open the way to further investigations evaluating a potential role of neurofilament dysregulation in explaining glutamatergic synaptic dysfunction observed in α-synucleinopathies such as Parkinson's disease.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/596109
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact