The risk associated with extreme traffic loads on bridges has seldom been explored, with State-of-the-art evaluation methods being time-consuming and unsuitable for fast risk management. Traditional risk management advocates optimizing offline bridge maintenance plans. In contrast, novel approaches that can assess and manage this risk live through Intelligent Transportation Systems (ITSs) are lacking. This study addresses these gaps with a three-block framework. It utilizes Weigh-In-Motion (WIM) systems for collecting bridge-specific traffic load data, develops a probabilistic Risk Prediction Model for estimating the frequency and severity of overloading events drawing on current Structural Design Codes (SDCs), and simulates an ITS-based architecture for implementing management actions. The framework was tested on 2.5M $+$ WIM raw data records gathered from the ring road of Brescia, Italy. Results showed that bridge design loads were overcome more frequently than SDCs prescriptions, and violations of the Traffic Code mass limit significantly affected risk predictions. These findings underscore the need for increased attention when issuing permits for extremely overweighted vehicles and encourage enforcement strategies implemented by ITS-based architectures for real-time risk management.

Traffic Hazards on Main Road’s Bridges: Real-Time Estimating and Managing the Overload Risk

Ventura R.;Maternini G.;Barabino B.
Conceptualization
2024-01-01

Abstract

The risk associated with extreme traffic loads on bridges has seldom been explored, with State-of-the-art evaluation methods being time-consuming and unsuitable for fast risk management. Traditional risk management advocates optimizing offline bridge maintenance plans. In contrast, novel approaches that can assess and manage this risk live through Intelligent Transportation Systems (ITSs) are lacking. This study addresses these gaps with a three-block framework. It utilizes Weigh-In-Motion (WIM) systems for collecting bridge-specific traffic load data, develops a probabilistic Risk Prediction Model for estimating the frequency and severity of overloading events drawing on current Structural Design Codes (SDCs), and simulates an ITS-based architecture for implementing management actions. The framework was tested on 2.5M $+$ WIM raw data records gathered from the ring road of Brescia, Italy. Results showed that bridge design loads were overcome more frequently than SDCs prescriptions, and violations of the Traffic Code mass limit significantly affected risk predictions. These findings underscore the need for increased attention when issuing permits for extremely overweighted vehicles and encourage enforcement strategies implemented by ITS-based architectures for real-time risk management.
File in questo prodotto:
File Dimensione Formato  
05_2024_Traffic_Hazards_on_Main_Roads_Bridges_Real-Time_Estimating_and_Managing_the_Overload_Risk_Compressed.pdf

gestori archivio

Tipologia: Altro materiale allegato
Licenza: PUBBLICO - Creative Commons 4.0
Dimensione 7.58 MB
Formato Adobe PDF
7.58 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/594665
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact