The power produced by a wind turbine can be considerably affected by the presence of systematic errors, which are particularly difficult to diagnose. This study deals with wind turbine systematic yaw error and proposes a novel point of view for diagnosing and quantifying its impact on the performance. The keystone is that, up to now in the literature, the effect of the yaw error on the nacelle wind speed measurements of the affected wind turbine has been disregarded. Given this, in this work a new method based on the general principle of flow equilibrium is proposed for the diagnosis of such type of error. It is based on recognizing that a misaligned wind turbine measures the wind speed differently with respect to when it is aligned. The method is shown to be effective for the diagnosis of two test cases, about which an independent estimate of the yaw error is available from upwind measurements (spinner anemometer). A data-driven generalization of the concept of relative performance is then formulated and employed for estimating how much the systematic yaw error affects wind turbine performance. It is shown that the proposed method is more appropriate than methods employing wind speed measurements (like the power curve), which are biased by the presence of the error. The results of this study support that SCADA-collected data can be very useful to diagnose wind turbine systematic yaw error, provided that a critical analysis about their use is done.
Diagnosis of wind turbine systematic yaw error through nacelle anemometer measurement analysis
Astolfi D.;
2023-01-01
Abstract
The power produced by a wind turbine can be considerably affected by the presence of systematic errors, which are particularly difficult to diagnose. This study deals with wind turbine systematic yaw error and proposes a novel point of view for diagnosing and quantifying its impact on the performance. The keystone is that, up to now in the literature, the effect of the yaw error on the nacelle wind speed measurements of the affected wind turbine has been disregarded. Given this, in this work a new method based on the general principle of flow equilibrium is proposed for the diagnosis of such type of error. It is based on recognizing that a misaligned wind turbine measures the wind speed differently with respect to when it is aligned. The method is shown to be effective for the diagnosis of two test cases, about which an independent estimate of the yaw error is available from upwind measurements (spinner anemometer). A data-driven generalization of the concept of relative performance is then formulated and employed for estimating how much the systematic yaw error affects wind turbine performance. It is shown that the proposed method is more appropriate than methods employing wind speed measurements (like the power curve), which are biased by the presence of the error. The results of this study support that SCADA-collected data can be very useful to diagnose wind turbine systematic yaw error, provided that a critical analysis about their use is done.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.