The rise of on-demand mobility technologies over the past decade has sparked interest in the integration of traditional transit and on-demand systems. One of the main reasons behind this is the potential to address a fundamental trade-off in transit: the ridership versus coverage dilemma. However, unlike purely fixed systems or purely on-demand systems, integrated systems are not well understood; their planning and operational problems are significantly more challenging, and their broader implications are the source of a heated debate. Motivated by this debate, we introduce the dynamicity gap, a general concept that quantifies the attainable benefit of allowing (but not requiring) dynamic components in the response strategy to a multistage optimization problem. Although computing the dynamicity gap exactly may be intractable, we develop an analytical framework with which to approximate it as a function of problem input parameters. The framework allows us to certify the value of dynamism (i.e., a dynamicity gap greater than one) for certain combinations of problem input parameters. We showcase our approach with two sets of computational experiments, from which we gain both qualitative and quantitative insights about the settings in which the integration of transit and on-demand systems may certifiably be a worthwhile investment.

On the Value of Dynamism in Transit Networks

Speranza M. G.;
2023-01-01

Abstract

The rise of on-demand mobility technologies over the past decade has sparked interest in the integration of traditional transit and on-demand systems. One of the main reasons behind this is the potential to address a fundamental trade-off in transit: the ridership versus coverage dilemma. However, unlike purely fixed systems or purely on-demand systems, integrated systems are not well understood; their planning and operational problems are significantly more challenging, and their broader implications are the source of a heated debate. Motivated by this debate, we introduce the dynamicity gap, a general concept that quantifies the attainable benefit of allowing (but not requiring) dynamic components in the response strategy to a multistage optimization problem. Although computing the dynamicity gap exactly may be intractable, we develop an analytical framework with which to approximate it as a function of problem input parameters. The framework allows us to certify the value of dynamism (i.e., a dynamicity gap greater than one) for certain combinations of problem input parameters. We showcase our approach with two sets of computational experiments, from which we gain both qualitative and quantitative insights about the settings in which the integration of transit and on-demand systems may certifiably be a worthwhile investment.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/592338
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact