The programming complexity of industrial robots significantly limits their expansion in complex industrial applications. Consequently, research has focused extensively on the development of intuitive programming methods.This article proposes a framework for task-oriented programming introducing an intuitive and modular task structure. The framework provides an algorithm able to optimize the execution parameter of the tasks. A physical simulation environment allows accurate parameter optimization in a virtual environment providing feasible and safe results. Efficiency tests demonstrated the method's effectiveness, and a comparison with genetic and Bayesian -based ones have been conducted.
Optimizing parameters of robotic task-oriented programming via a multiphysics simulation
Delledonne M.;Beschi M.
2023-01-01
Abstract
The programming complexity of industrial robots significantly limits their expansion in complex industrial applications. Consequently, research has focused extensively on the development of intuitive programming methods.This article proposes a framework for task-oriented programming introducing an intuitive and modular task structure. The framework provides an algorithm able to optimize the execution parameter of the tasks. A physical simulation environment allows accurate parameter optimization in a virtual environment providing feasible and safe results. Efficiency tests demonstrated the method's effectiveness, and a comparison with genetic and Bayesian -based ones have been conducted.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.