Bones are among the structures most likely to be recovered after death. However, the low quantity of preserved DNA and complex processing from sample to DNA profile make forensic DNA analysis of bones a challenging task. Raman spectroscopy and gas chromatography-mass spectrometry (GC/MS), have the potential to be useful as screening tools for DNA analysis and in decomposition studies. The objective of this research was to assess the usefulness of such molecular investigations. Femur samples collected from 50 decomposing human bodies were subjected to Raman spectroscopy and GC/MS. Assessment of nuclear DNA quantity and short tandem repeat (STR) genotyping efficiency were also performed. Raman parameters (crystallinity, carbonate-to-phosphate ratio, mineral-to-matrix ratio) and detected lipids were recorded. Background fluorescence proved problem-atic for Raman analysis of forensic bones. Regardless, it was not associated with less preserved DNA or less detected STR alleles. Fatty acids, hydrocarbons, and five types of fatty acid methyl esters (FAMEs) were detected. The main phosphate peak position in Raman spectra was significantly correlated with preserved DNA (p = 0.03713), while significantly more STR alleles were detected in bones containing methyl hexadecenoate (p = 0.04236). Detection of FAMEs in the bone matrix suggests a reaction between methanol produced by bacteria and free fatty acids, which are not associated with the level of preservation of endogenous DNA. The techniques assessed have shown to be useful in molecular taphonomy studies and forensic genetics.
Assessing the usefulness of Raman spectroscopy and lipid analysis of decomposed human bones in forensic genetics and molecular taphonomy
Alessandri, IvanoInvestigation
;Verzeletti, AndreaMembro del Collaboration Group
2024-01-01
Abstract
Bones are among the structures most likely to be recovered after death. However, the low quantity of preserved DNA and complex processing from sample to DNA profile make forensic DNA analysis of bones a challenging task. Raman spectroscopy and gas chromatography-mass spectrometry (GC/MS), have the potential to be useful as screening tools for DNA analysis and in decomposition studies. The objective of this research was to assess the usefulness of such molecular investigations. Femur samples collected from 50 decomposing human bodies were subjected to Raman spectroscopy and GC/MS. Assessment of nuclear DNA quantity and short tandem repeat (STR) genotyping efficiency were also performed. Raman parameters (crystallinity, carbonate-to-phosphate ratio, mineral-to-matrix ratio) and detected lipids were recorded. Background fluorescence proved problem-atic for Raman analysis of forensic bones. Regardless, it was not associated with less preserved DNA or less detected STR alleles. Fatty acids, hydrocarbons, and five types of fatty acid methyl esters (FAMEs) were detected. The main phosphate peak position in Raman spectra was significantly correlated with preserved DNA (p = 0.03713), while significantly more STR alleles were detected in bones containing methyl hexadecenoate (p = 0.04236). Detection of FAMEs in the bone matrix suggests a reaction between methanol produced by bacteria and free fatty acids, which are not associated with the level of preservation of endogenous DNA. The techniques assessed have shown to be useful in molecular taphonomy studies and forensic genetics.File | Dimensione | Formato | |
---|---|---|---|
paper Raman bones.pdf
solo utenti autorizzati
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
3.08 MB
Formato
Adobe PDF
|
3.08 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.