In conventional sheet forming processes, such as stamping or drawing, significant contact phenomena take place between workpiece and die surfaces. Especially, relative motion and normal loads generate friction which influences some aspects of processes such as material flow, tools wear and life and total force needed to complete the process. In the current paper an experimental test campaign has been carried out using a large scale pin-on-disk device designed and realized by the Authors to investigate the influence of pressure, sliding velocity and temperature. The purpose is to test the developed device and to find which and how these parameters mostly affect friction. The pin-on-disk test consists of two specimens, a pin and a plate representing respectively die and workpiece, which are compressed by means of a known force and then moved one over the other. Compression and friction forces are sampled during the tests and the friction coefficient is estimated as the ratio of these two forces. The tested materials are H13 die steel on FeP04 and AZ31 sheets.

Process parameters influence on friction coefficient in sheet forming operations

Ceretti E.;Fiorentino A.;
2008-01-01

Abstract

In conventional sheet forming processes, such as stamping or drawing, significant contact phenomena take place between workpiece and die surfaces. Especially, relative motion and normal loads generate friction which influences some aspects of processes such as material flow, tools wear and life and total force needed to complete the process. In the current paper an experimental test campaign has been carried out using a large scale pin-on-disk device designed and realized by the Authors to investigate the influence of pressure, sliding velocity and temperature. The purpose is to test the developed device and to find which and how these parameters mostly affect friction. The pin-on-disk test consists of two specimens, a pin and a plate representing respectively die and workpiece, which are compressed by means of a known force and then moved one over the other. Compression and friction forces are sampled during the tests and the friction coefficient is estimated as the ratio of these two forces. The tested materials are H13 die steel on FeP04 and AZ31 sheets.
File in questo prodotto:
File Dimensione Formato  
RI 01 Process parameters influence on friction [...].pdf

gestori archivio

Licenza: DRM non definito
Dimensione 2.74 MB
Formato Adobe PDF
2.74 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/588945
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 18
social impact