: This work represents the first attempt to provide an overview of how to face data integration as the result of a dialogue between neuroscientists and computer scientists. Indeed, data integration is fundamental for studying complex multifactorial diseases, such as the neurodegenerative diseases. This work aims at warning the readers of common pitfalls and critical issues in both medical and data science fields. In this context, we define a road map for data scientists when they first approach the issue of data integration in the biomedical domain, highlighting the challenges that inevitably emerge when dealing with heterogeneous, large-scale and noisy data and proposing possible solutions. Here, we discuss data collection and statistical analysis usually seen as parallel and independent processes, as cross-disciplinary activities. Finally, we provide an exemplary application of data integration to address Alzheimer's Disease (AD), which is the most common multifactorial form of dementia worldwide. We critically discuss the largest and most widely used datasets in AD, and demonstrate how the emergence of machine learning and deep learning methods has had a significant impact on disease's knowledge particularly in the perspective of an early AD diagnosis.

An overview of data integration in neuroscience with focus on Alzheimer's Disease

Abate, Giulia;Uberti, Daniela;
2023-01-01

Abstract

: This work represents the first attempt to provide an overview of how to face data integration as the result of a dialogue between neuroscientists and computer scientists. Indeed, data integration is fundamental for studying complex multifactorial diseases, such as the neurodegenerative diseases. This work aims at warning the readers of common pitfalls and critical issues in both medical and data science fields. In this context, we define a road map for data scientists when they first approach the issue of data integration in the biomedical domain, highlighting the challenges that inevitably emerge when dealing with heterogeneous, large-scale and noisy data and proposing possible solutions. Here, we discuss data collection and statistical analysis usually seen as parallel and independent processes, as cross-disciplinary activities. Finally, we provide an exemplary application of data integration to address Alzheimer's Disease (AD), which is the most common multifactorial form of dementia worldwide. We critically discuss the largest and most widely used datasets in AD, and demonstrate how the emergence of machine learning and deep learning methods has had a significant impact on disease's knowledge particularly in the perspective of an early AD diagnosis.
File in questo prodotto:
File Dimensione Formato  
An_overview_of_data_integration_in_neuroscience_with_focus_on_Alzheimers_Disease.pdf

accesso aperto

Licenza: Dominio pubblico
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/583605
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact