Background and purpose: Stereotactic body radiotherapy (SBRT) has a consolidated role in the treatment of bone oligometastases from prostate cancer (PCa). While the evidence for spinal oligometastases SBRT was robust, its role in non-spinal-bone metastases (NSBM) is not standardized. In fact, there was no clear consensus about dose and target definition in this setting. The aim of our study was to evaluate efficacy, toxicity, and the pattern of relapse in SBRT delivered to NSBM from PCa. Materials and methods: From 2016 to 2021, we treated a series of oligo-NSBM from PCa with Ga-68-PSMA PET/CT-guided SBRT. The primary endpoint was local progression-free survival (LPFS). The secondary endpoints were toxicity, the pattern of intraosseous relapse, distant progression-free survival (DPFS), polimetastases-free survival (PMFS), and overall survival (OS). Results: a total of 150 NSBM in 95 patients were treated with 30-35 Gy in five fractions. With a median follow-up of 26 months, 1- and 3 years LPFS was 96.3% and 89%, respectively. A biologically effective dose (BED) = 198 Gy was correlated with improved LPFS (p = 0.007). Intraosseous relapse occurred in eight (5.3%) cases. Oligorecurrent disease was associated with a better PMFS compared to de novo oligometastatic disease (p = 0.001) and oligoprogressive patients (p = 0.007). No grade = 3 toxicity occurred. Conclusion: SBRT is a safe and effective tool for NSBM from PCa in the oligometastatic setting. Intraosseous relapse was a relatively rare event. Predictive factors of the improved outcomes were defined.
PSMA-PET/CT-Based Stereotactic Body Radiotherapy (SBRT) in the Treatment of Uncomplicated Non-Spinal Bone Oligometastases from Prostate Cancer
Pastorello, Edoardo;Ravelli, Paolo;Alongi, Filippo
2023-01-01
Abstract
Background and purpose: Stereotactic body radiotherapy (SBRT) has a consolidated role in the treatment of bone oligometastases from prostate cancer (PCa). While the evidence for spinal oligometastases SBRT was robust, its role in non-spinal-bone metastases (NSBM) is not standardized. In fact, there was no clear consensus about dose and target definition in this setting. The aim of our study was to evaluate efficacy, toxicity, and the pattern of relapse in SBRT delivered to NSBM from PCa. Materials and methods: From 2016 to 2021, we treated a series of oligo-NSBM from PCa with Ga-68-PSMA PET/CT-guided SBRT. The primary endpoint was local progression-free survival (LPFS). The secondary endpoints were toxicity, the pattern of intraosseous relapse, distant progression-free survival (DPFS), polimetastases-free survival (PMFS), and overall survival (OS). Results: a total of 150 NSBM in 95 patients were treated with 30-35 Gy in five fractions. With a median follow-up of 26 months, 1- and 3 years LPFS was 96.3% and 89%, respectively. A biologically effective dose (BED) = 198 Gy was correlated with improved LPFS (p = 0.007). Intraosseous relapse occurred in eight (5.3%) cases. Oligorecurrent disease was associated with a better PMFS compared to de novo oligometastatic disease (p = 0.001) and oligoprogressive patients (p = 0.007). No grade = 3 toxicity occurred. Conclusion: SBRT is a safe and effective tool for NSBM from PCa in the oligometastatic setting. Intraosseous relapse was a relatively rare event. Predictive factors of the improved outcomes were defined.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.