This thesis presents a unified ensemble approach for forgery detection and localization in digital images. The focus of the research is on two of the most common but effective forgery techniques: copy-move and splicing. The ensemble architecture combines a set of forgery detection and localization methods in order to achieve improved performance with respect to standalone approaches. The main contributions of this work are listed in the following. First, an extensive review of the current state of the art in forgery detection, with a focus on deep learning-based approaches is presented in Chapter 1 and 2. An important insight that is derived is the following: these approaches, although promising, cannot be easily compared in terms of performance because they are typically evaluated on custom datasets due to the lack of precisely annotated data. Also, they are often not publicly available. We then designed a keypoint-based copy-move detection algorithm, which is described in Chapter 3. Compared to previous existing keypoints-based approaches, we added a density-based clustering step to filter out noisy keypoints matches. This method has been demonstrated to perform well on two benchmark datasets and outperforms one of the most cited state-of-the-art methods. In Chapter 4 a novel architecture is proposed to predict the 3D light direction of the light in a given image. This approach leverages the idea of combining, in a data-driven method, a physical illumination model that allows for improved regression performance. In order to fill in the gap of data scarcity for training highly-parameterized deep learning architectures, especially for the task of intrinsic image decomposition, we developed two data generation algorithms that were used to produce two datasets - one synthetic and one of real images - to train and evaluate our approach. The proposed light direction estimation model has then been employed to design a novel splicing detection approach, discussed in Chapter 5, in which light direction inconsistencies between different regions in the image are used to highlight potential splicing attacks. The proposed ensemble scheme for forgery detection is described in the last chapter. It includes a "FusionForgery" module that combines the outputs of the different previously proposed "base" methods and assigns a binary label (forged vs. pristine) to the input image. In the case of forgery prediction, our method also tries to further specialize the decision between splicing and copy-move attacks. If the image is predicted as copy-moved, an attempt to reconstruct the source regions used in the copy-move attack is also done. The performance of the proposed approach has been assessed by training and testing it on a synthetic dataset, generated by us, comprising both copy-move and splicing attacks. The ensemble approach outperforms all of the individual "base" methods, demonstrating the validity of the proposed strategy.

Questa tesi presenta un approccio d'insieme unificato - "ensemble" - per il rilevamento e la localizzazione di contraffazioni in immagini digitali. Il focus della ricerca è su due delle più comuni ma efficaci tecniche di contraffazione: "copy-move" e "splicing". L'architettura proposta combina una serie di metodi di rilevamento e localizzazione di manipolazioni per ottenere prestazioni migliori rispetto a metodi utilizzati in modalità "standalone". I principali contributi di questo lavoro sono elencati di seguito. In primo luogo, nel Capitolo 1 e 2 viene presentata un'ampia rassegna dell'attuale stato dell'arte nel rilevamento di manipolazioni ("forgery"), con particolare attenzione agli approcci basati sul deep learning. Un'importante intuizione che ne deriva è la seguente: questi approcci, sebbene promettenti, non possono essere facilmente confrontati in termini di performance perché tipicamente vengono valutati su dataset personalizzati a causa della mancanza di dati annotati con precisione. Inoltre, spesso questi dati non sono resi disponibili pubblicamente. Abbiamo poi progettato un algoritmo di rilevamento di manipolazioni copy-move basato su "keypoint", descritto nel capitolo 3. Rispetto a esistenti approcci simili, abbiamo aggiunto una fase di clustering basato su densità spaziale per filtrare le corrispondenze rumorose dei keypoint. I risultati hanno dimostrato che questo metodo funziona bene su due dataset di riferimento e supera uno dei metodi più citati in letteratura. Nel Capitolo 4 viene proposta una nuova architettura per predire la direzione della luce 3D in una data immagine. Questo approccio sfrutta l'idea di combinare un metodo "data-driven" con un modello di illuminazione fisica, consentendo così di ottenere prestazioni migliori. Al fine di sopperire al problema della scarsità di dati per l'addestramento di architetture di deep learning altamente parametrizzate, in particolare per il compito di scomposizione intrinseca delle immagini, abbiamo sviluppato due algoritmi di generazione dei dati. Questi sono stati utilizzati per produrre due dataset - uno sintetico e uno di immagini reali - con lo scopo di addestrare e valutare il nostro approccio. Il modello di stima della direzione della luce proposto è stato sfruttato in un nuovo approccio di rilevamento di manipolazioni di tipo splicing, discusso nel Capitolo 5, in cui le incoerenze nella direzione della luce tra le diverse regioni dell'immagine vengono utilizzate per evidenziare potenziali attacchi splicing. L'approccio ensemble proposto è descritto nell'ultimo capitolo. Questo include un modulo "FusionForgery" che combina gli output dei metodi "base" proposti in precedenza e assegna un'etichetta binaria (forged vs. original). Nel caso l'immagine sia identificata come contraffatta, il nostro metodo cerca anche di specializzare ulteriormente la decisione tra attacchi splicing o copy-move. In questo secondo caso, viene eseguito anche un tentativo di ricostruire le regioni "sorgente" utilizzate nell'attacco copy-move. Le prestazioni dell'approccio proposto sono state valutate addestrandolo e testandolo su un dataset sintetico, generato da noi, comprendente sia attacchi copy-move che di tipo splicing. L'approccio ensemble supera tutti i singoli metodi "base" in termini di prestazioni, dimostrando la validità della strategia proposta.

An ensemble architecture for forgery detection and localization in digital images / Zanardelli, Marcello. - (2023 Jun 27).

An ensemble architecture for forgery detection and localization in digital images

ZANARDELLI, MARCELLO
2023-06-27

Abstract

This thesis presents a unified ensemble approach for forgery detection and localization in digital images. The focus of the research is on two of the most common but effective forgery techniques: copy-move and splicing. The ensemble architecture combines a set of forgery detection and localization methods in order to achieve improved performance with respect to standalone approaches. The main contributions of this work are listed in the following. First, an extensive review of the current state of the art in forgery detection, with a focus on deep learning-based approaches is presented in Chapter 1 and 2. An important insight that is derived is the following: these approaches, although promising, cannot be easily compared in terms of performance because they are typically evaluated on custom datasets due to the lack of precisely annotated data. Also, they are often not publicly available. We then designed a keypoint-based copy-move detection algorithm, which is described in Chapter 3. Compared to previous existing keypoints-based approaches, we added a density-based clustering step to filter out noisy keypoints matches. This method has been demonstrated to perform well on two benchmark datasets and outperforms one of the most cited state-of-the-art methods. In Chapter 4 a novel architecture is proposed to predict the 3D light direction of the light in a given image. This approach leverages the idea of combining, in a data-driven method, a physical illumination model that allows for improved regression performance. In order to fill in the gap of data scarcity for training highly-parameterized deep learning architectures, especially for the task of intrinsic image decomposition, we developed two data generation algorithms that were used to produce two datasets - one synthetic and one of real images - to train and evaluate our approach. The proposed light direction estimation model has then been employed to design a novel splicing detection approach, discussed in Chapter 5, in which light direction inconsistencies between different regions in the image are used to highlight potential splicing attacks. The proposed ensemble scheme for forgery detection is described in the last chapter. It includes a "FusionForgery" module that combines the outputs of the different previously proposed "base" methods and assigns a binary label (forged vs. pristine) to the input image. In the case of forgery prediction, our method also tries to further specialize the decision between splicing and copy-move attacks. If the image is predicted as copy-moved, an attempt to reconstruct the source regions used in the copy-move attack is also done. The performance of the proposed approach has been assessed by training and testing it on a synthetic dataset, generated by us, comprising both copy-move and splicing attacks. The ensemble approach outperforms all of the individual "base" methods, demonstrating the validity of the proposed strategy.
27-giu-2023
Questa tesi presenta un approccio d'insieme unificato - "ensemble" - per il rilevamento e la localizzazione di contraffazioni in immagini digitali. Il focus della ricerca è su due delle più comuni ma efficaci tecniche di contraffazione: "copy-move" e "splicing". L'architettura proposta combina una serie di metodi di rilevamento e localizzazione di manipolazioni per ottenere prestazioni migliori rispetto a metodi utilizzati in modalità "standalone". I principali contributi di questo lavoro sono elencati di seguito. In primo luogo, nel Capitolo 1 e 2 viene presentata un'ampia rassegna dell'attuale stato dell'arte nel rilevamento di manipolazioni ("forgery"), con particolare attenzione agli approcci basati sul deep learning. Un'importante intuizione che ne deriva è la seguente: questi approcci, sebbene promettenti, non possono essere facilmente confrontati in termini di performance perché tipicamente vengono valutati su dataset personalizzati a causa della mancanza di dati annotati con precisione. Inoltre, spesso questi dati non sono resi disponibili pubblicamente. Abbiamo poi progettato un algoritmo di rilevamento di manipolazioni copy-move basato su "keypoint", descritto nel capitolo 3. Rispetto a esistenti approcci simili, abbiamo aggiunto una fase di clustering basato su densità spaziale per filtrare le corrispondenze rumorose dei keypoint. I risultati hanno dimostrato che questo metodo funziona bene su due dataset di riferimento e supera uno dei metodi più citati in letteratura. Nel Capitolo 4 viene proposta una nuova architettura per predire la direzione della luce 3D in una data immagine. Questo approccio sfrutta l'idea di combinare un metodo "data-driven" con un modello di illuminazione fisica, consentendo così di ottenere prestazioni migliori. Al fine di sopperire al problema della scarsità di dati per l'addestramento di architetture di deep learning altamente parametrizzate, in particolare per il compito di scomposizione intrinseca delle immagini, abbiamo sviluppato due algoritmi di generazione dei dati. Questi sono stati utilizzati per produrre due dataset - uno sintetico e uno di immagini reali - con lo scopo di addestrare e valutare il nostro approccio. Il modello di stima della direzione della luce proposto è stato sfruttato in un nuovo approccio di rilevamento di manipolazioni di tipo splicing, discusso nel Capitolo 5, in cui le incoerenze nella direzione della luce tra le diverse regioni dell'immagine vengono utilizzate per evidenziare potenziali attacchi splicing. L'approccio ensemble proposto è descritto nell'ultimo capitolo. Questo include un modulo "FusionForgery" che combina gli output dei metodi "base" proposti in precedenza e assegna un'etichetta binaria (forged vs. original). Nel caso l'immagine sia identificata come contraffatta, il nostro metodo cerca anche di specializzare ulteriormente la decisione tra attacchi splicing o copy-move. In questo secondo caso, viene eseguito anche un tentativo di ricostruire le regioni "sorgente" utilizzate nell'attacco copy-move. Le prestazioni dell'approccio proposto sono state valutate addestrandolo e testandolo su un dataset sintetico, generato da noi, comprendente sia attacchi copy-move che di tipo splicing. L'approccio ensemble supera tutti i singoli metodi "base" in termini di prestazioni, dimostrando la validità della strategia proposta.
An ensemble architecture for forgery detection and localization in digital images / Zanardelli, Marcello. - (2023 Jun 27).
File in questo prodotto:
File Dimensione Formato  
PhD_Thesis_merged_A.pdf

accesso aperto

Descrizione: TESI
Tipologia: Tesi di dottorato
Dimensione 51.28 MB
Formato Adobe PDF
51.28 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/579905
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact