

DOTTORATO DI RICERCA IN INGEGNERIA DELL’INFORMAZIONE

ING-INF/03 - Telecomunicazioni

CICLO XXXV

 An ensemble architecture for forgery detection
and localization in digital images

Candidato:
Dott. Marcello Zanardelli

Supervisore:
Ch.mo Dott. Nicola Adami

TABLE OF CONTENTS

LIST OF TABLES . viii
LIST OF FIGURES . x
ABSTRACT ITALIANO . xvii
ABSTRACT . xix

Chapter

1 INTRODUCTION . 1

1.1 Image forgery detection applications 2
1.2 Image forgery types . 6

1.2.1 Copy-move . 6
1.2.2 Splicing . 6
1.2.3 Inpainting . 7
1.2.4 DeepFake . 9
1.2.5 CGI-generated images/videos 11
1.2.6 GAN-based face synthesis . 12
1.2.7 Diffusion models . 13

1.3 Thesis organization . 15

2 DEEP LEARNING BASED FORGERY DETECTION
METHODS - A PERFORMANCE COMPARISON 18

2.1 Traditional passive forgery detection methods 19

2.1.1 Pixel based . 21
2.1.2 Format based . 23
2.1.3 Camera based . 23
2.1.4 Lighting based . 24
2.1.5 Geometry based . 25

2.2 Deep Learning based methods . 26

iii

2.3 Datasets description . 29

2.3.1 CASIA v1.0 (CASIA1) . 29
2.3.2 CASIA v2.0 (CASIA2) . 30
2.3.3 DVMM . 30
2.3.4 MICC-F220 . 30
2.3.5 MICC-F600 . 30
2.3.6 MICC-F2000 . 30
2.3.7 SATs-130 . 30
2.3.8 CMFD . 31
2.3.9 CoMoFoD . 31
2.3.10 DS0-1 . 31
2.3.11 Korus . 31
2.3.12 DFDC (DeepFake Detection Challenge on Kaggle) 31
2.3.13 FaceForensic++ . 32
2.3.14 Celeb-DF . 32
2.3.15 TrueFace . 32
2.3.16 VIPCup2022 dataset . 32
2.3.17 V-SMUD and R-SMUD . 33

2.4 Evaluation metrics . 33
2.5 Copy-move specific methods . 34

2.5.1 R. Agarwal et al. 35
2.5.2 Y. Abdalla et al. 37
2.5.3 Y. Wu et al. 40
2.5.4 M. Elaskily et al. 42
2.5.5 J. Ouyang et al. 45
2.5.6 Amit Doegara et al. 46

2.6 Copy-move and splicing methods . 47

2.6.1 Cozzolino and Verdoliva . 49
2.6.2 Y. Zhang et al. 52
2.6.3 N. H. Rajini . 53
2.6.4 F.Marra et al. 56
2.6.5 Y. Rao et al. 58
2.6.6 M. T. H. Majumder et al. 59
2.6.7 R. Thakur et al. 61

2.7 DeepFake methods . 62

2.7.1 A. Rössler et al. 62

iv

2.7.2 Huy H. Nguyen et al. 64
2.7.3 Y. Li et al. 66

2.8 Performance comparison . 67

2.8.1 Splicing and copy-move methods 68

2.8.1.1 Copy-move detection methods 69
2.8.1.2 Splicing and copy-move detection methods 70
2.8.1.3 DeepFake detection methods 71

2.9 Discussion . 72

3 COPY-MOVE DETECTION USING SIFT KEYPOINTS
MATCHING . 77

3.1 Copy-move detection method . 78

3.1.1 Descriptors matching . 78
3.1.2 Filtering with Lowe’s ratio . 79
3.1.3 DBSCAN based filtering . 80

3.2 Experimental results . 82

3.2.1 Future work . 84

4 LIGHT DIRECTION ESTIMATION 87

4.1 Related work . 90

4.1.1 Sky and sun models . 90
4.1.2 Light estimation approaches 92
4.1.3 Benchmark datasets . 94

4.2 Light prediction model . 96

4.2.1 Normals estimation net . 98
4.2.2 Light estimation net . 98
4.2.3 Physical Illumination model 100

4.3 Dataset generation methods . 101

4.3.1 Synthetic Dataset . 101

v

4.3.2 Real dataset . 104

4.3.2.1 Input panoramas . 104
4.3.2.2 Sun position estimation 105
4.3.2.3 Limited FOV extraction from Panorama 106
4.3.2.4 Implementation . 111

4.4 Experimental results . 111

4.4.1 Network Training . 112
4.4.2 Notation and metrics . 113
4.4.3 Results on RealOut . 114
4.4.4 Results on SynthOut . 115
4.4.5 Results on other CG datasets 116
4.4.6 Ablation Study . 117

4.5 Discussion . 119

5 LIGHT-BASED FORGERY DETECTION 123

5.1 Method architecture . 125
5.2 Experiments . 129

5.2.1 Synthetic splicing dataset . 129
5.2.2 Evaluation on benchmark datasets 135

5.3 InverseRenderNet - based approach 140

5.3.1 Differentiable forward rendering 141
5.3.2 Proposed approach . 145

5.3.2.1 Feature extraction 147
5.3.2.2 Binary classifier . 148

5.4 Experiments . 148

5.4.1 Results evaluation on Synthetic dataset 149
5.4.2 Results evaluation on Benchmark dataset 150

5.5 Discussion . 150

vi

6 ENSEMBLE FORGERY DETECTION APPROACH 155

6.1 Method overview . 156

6.1.1 Base2 method . 157
6.1.2 FusionForgery classifier . 157
6.1.3 Region coherence analysis . 159
6.1.4 Source region retrieval . 161
6.1.5 Splicing detection . 161

6.2 Dataset generation . 163
6.3 Experimental results . 164

6.3.1 Binary forgery classification and localization performance . . . 165

6.3.1.1 Ablation analysis . 166

6.3.2 Splicing detection performance 167
6.3.3 Source region localization performance 169

6.4 Discussion . 170

CONCLUSIONS . 174

BIBLIOGRAPHY . 179

Appendix

SCALE INVARIANT FEATURE TRANSFORM (SIFT) 192

A.1 Scale-space extrema detection . 192
A.2 Key-point localization . 194
A.3 Orientation assignment . 196
A.4 Key-point descriptors computation 196

vii

LIST OF TABLES

2.1 Benchmark copy-move/splicing datasets overview. 29

2.2 Confusion matrix and outcomes. 35

2.3 Performances of BusterNet [146] on CASIA2. 43

2.4 Performance metrics of [41]. 45

2.5 Copy-move and splicing detection methods performance comparison 69

2.6 DeepFake detection methods performance. 72

3.1 Performance of proposed method on MICC-F220, MICC-F600 and
MICC-F2000. 84

3.2 Comparison of avg. F1 score between Amerini et al. [14] and
proposed approach. 84

4.1 AUC scores of our approach on four datasets against different
fine-tuning levels: (i) no transfer learning/fine-tuning, (ii) transfer
learning + 10 epochs of fine-tuning (FT-10), (iii) transfer learning +
50 epochs of fine-tuning (FT-50). 117

4.2 Angular error (in degrees) of our model on different datasets. On
SynthOut, VIDIT, and SID2 the reported performance is obtained
with the 50 epochs fine-tuned model (FT-50). 117

4.3 Comparison of mean angular error (in degrees) of Fusion and Light
Only models on four reference datasets. For SynthOut, VIDIT and
SID2 the reported results are obtained with both Fusion and Light
Only models fine-tuned with the FT-50 strategy. 119

5.1 Comparison of F1-score between the two proposed light-based
splicing detection methods on the three mentioned datasets. 153

viii

6.1 Results of ablation study on SynthOutForgery. 167

ix

LIST OF FIGURES

1.1 An example of a copy-move forgery, taken from MICC-F600 dataset
[14]. One of the front towers is a surreptitious duplicate. 6

1.2 A high-profile, in-the-wild example of a splicing forgery, that widely
circulated online in 2004. The figure of Jane Fonda, captured in an
unrelated 1972 photo, has been spliced into a pre-existing John Kerry
picture, taken in 1970 (image taken from [20]). 7

1.3 An example of inpainting generated with Nvidia interactive demo at
https://www.nvidia.com/research/inpainting/index.html. The
inpainting mask (i.e. the deleted region that must be filled by the
inpainting algorithm) is shown in yellow in the left image. The
original image is taken from the MICC-F2000 dataset [14] 9

1.4 Examples of DeepFakes generated from different sources (image
courtesy of
https://www.cs.albany.edu/ lsw/celeb-deepfakeforensics.html). The
first column shows the original frames, while the other five show the
DeepFakes obtained with 5 different sources. 10

1.5 A photo-realistic CGI rendered image (created and published on
reddit by user u/Hary1495 . 12

1.6 An example of face portrait generated with styleGAN. 13

1.7 Schematic view of generative diffusion models. 14

1.8 Example of text prompt and corresponding image generated with
DALL-E2. 16

1.9 Example of text prompt and corresponding image generated with
MidJourney V.5. 17

x

https://www.nvidia.com/research/inpainting/index.html
https://www.cs.albany.edu/\protect \unhbox \voidb@x \protect \penalty \@M \ {}lsw/celeb-deepfakeforensics.html

2.1 In [13] the super-pixel segmentation map is given, along with the
target image, as input to a VGGNet. Features at different levels are
extracted for each of the input super-pixels. Finally, high-level
features undergo a so called “relocation phase” to obtain a
localization mask at the original resolution. 37

2.2 Architecture of the GAN-based method in [11]. The upper branch
implements a per-pixel binary classificator (forged/pristine), while the
bottom one is used to find similarities between regions. The outputs
of these branches are then combined to obtain the final output mask
in which, if the image is considered forged, source and target regions
can be distinguished. 39

2.3 Architecture of BusterNet. [146].Mani-det branch is used to obtain a
classification of each pixel of the input image as forged or pristine.
Simi-det branch instead, aims to find similarities between pixels in
the input image. Finally, a fusion module is employed that takes as
input the outputs of the two branches and outputs a classification for
each pixel: source, target or pristine. 43

2.4 Detection approach of [36]. A pre-trained AlexNet is used as feature
extractor. The extracted features, either from pristine or forged
images, are then used to train a SVM classifier to obtain the final
decision on the input image: forged VS pristine. 48

2.5 Architecture of the Siamese network proposed in [29]. Two residual
networks (with shared weights) are trained to extract noise patterns
that are given as input to a binary classificator. The model learns to
extract similar noise patterns for positive labels (patches from same
cameras) or different ones for negative labels (patches from different
cameras and/or different spatial locations). 51

2.6 Construction of patch-wise ground-truth from the pixel-level mask as
in [156] . 54

2.7 Multi-step strategy proposed in [118]. First, features are extracted
from the YCbCr converted image to classify the image as authentic or
forged. If the image is classified as forged, a CNN is used to
distinguish between copy-move and splicing attacks. Finally, in the
case of copy-move attack, another feature extraction and localization
procedure is employed to obtain a map of the forged regions. 55

xi

2.8 Architecture of the technique in [120]. Overlapping patches are
extracted from the input image and feature vectors are extracted
from each of them. A global feature, computed by averaging along
the spatial dimension, is then fed to an SVM model, which is used to
obtain the final global classification: forged VS authentic. 59

2.9 Overview of method [101]. Note that pre-processing and
post-processing stages are task-dependent, e.g., for DeepFake
detection in the former a face tracking algorithm is used to extract
and normalize the face region, while for CGI detection this step
consists in the extraction of overlapping patches. 66

3.1 General steps of our copy-move detection method based on [14]. . . 79

3.2 DBSCAN-based filtering. The following kind of weak matches are
filtered out: (i) matches involving outliers keypoints (blue crossed)
and (ii) matches that are scattered to multiple clusters/noise (red
crossed). 81

3.3 Confusion matrix of proposed copy-move detection approach on
MICC-F220. 85

3.4 Confusion matrix of proposed copy-move detection approach on
MICC-F600. 86

3.5 Confusion matrix of proposed copy-move detection approach on
MICC-F2000. 86

4.1 Our deep light estimation architecture. 97

4.2 Modified inception module used by the authors in [25]. Conv1-4 are
Convolutional layers with different kernel dimensions and/or output
depths. 98

4.3 Architecture of normals estimation network, as proposed in [25]. The
two gray blocks represent convolutional layers, while all the colored
ones represent modified Inception modules (Fig. 4.2) with different
parameters for the internal convolutional layers. 99

4.4 Architecture of our light estimation network. 100

xii

4.5 Approach used to create our synthetic dataset, SynthOut : both the
camera and the sun are moved across a fixed path. L is the direction
of the sun expressed in the camera reference frame. 102

4.6 Two sample images extracted from our SynthOut dataset, depicting
the same scene under different light conditions (direction and color). 104

4.7 Sun position estimation examples. In cases c and d the position was
manually corrected. 106

4.8 Horizontal and vertical angles of sun direction. 107

4.9 Camera and global reference system. the camera orientation is
identified by the two angles θ and φ. 108

4.10 Pinhole camera model and ray-tracing approach to rendering a
portion of the panorama on the image plane. 109

4.11 3D normals prediction obtained with the code in [10], which is an
implementation of the model in [25], in the indoor case. 113

4.12 3D normals prediction obtained with the code in [10], for outdoor
scenes. Even if no ground truth normals map is available for
validation, it can be seen that the result is not qualitatively
satisfactory. 114

4.13 Cumulative angular error distribution on our RealOut dataset. . . . 115

4.14 Comparison between Fusion and Light Only architectures on 4
datasets. On SynthOut the two models achieve similar performance,
while on all the other datasets Fusion achieve significantly better
AUC scores, showing how the inclusion of the surface normal
estimation branch helps to improve the light estimation performance.
Note: for SynthOut, VIDIT and SID2 we compare both models
fine-tuned with the FT-50 strategy. 120

5.1 Splicing example. The light direction is not consistent between the
two people in the image. 123

5.2 An example of an indoor scene with multiple light sources creating a
complex lighting field. 124

5.3 Architecture of proposed light-based forgery detection method. . . . 125

xiii

5.4 Binary classifier used in our proposed approach, that takes as input
the feature vector x, which is an embedding of the local and global
light predictions. 128

5.5 An example spliced image and the corresponding masks from our
synthetic splicing dataset. 129

5.6 ROC curve and corresponding AUC obtained on synthetic splicing
dataset. 130

5.7 Confusion matrix on sythetic splicing dataset. 131

5.8 ROC curve and AUC obtained on synthetic splicing dataset by using
the ground truth 3D light directions instead of the predicted one. . 132

5.9 Cumulative angular error distribution of light predictions on patches.
On the plot, we highlighted four different percentiles, corresponding
to the levels 80%, 90%, 95%, and 99%. 133

5.10 Cumulative frequency curve of angular differences between light
directions in spliced images. Different percentiles eα of light direction
prediction errors (the α level is highlighted in yellow) are also marked
on the plot. 134

5.11 ROC curve and AUC obtained on the 98%-confidence splicing dataset. 135

5.12 Two examples of splicing detection on the 98%-confidence splicing
dataset. The bounding boxes of the objects on which the local light
predictions were computed are shown in red. The predicted and
ground truth light directions are marked as green and yellow arrows,
respectively. The object with the greatest difference in light
directions from the global one is marked as the spliced one (cyan).
The green text indicates the angular difference between the light
directions of the two images involved in the splicing. 136

5.13 Confusion matrix obtained on 98%-confidence splicing dataset. . . . 136

5.14 Confusion matrix obtained with proposed method on CASIA2
dataset. 137

5.15 ROC curve obtained on CASIA2 dataset. 138

xiv

5.16 Examples of segmentation on CASIA2 spliced images. Even if a
ground truth map of the spliced region is not available, it can be seen
that often the segmented objects don’t relate to the spliced regions. 139

5.17 Geometry setup for radiance model. 141

5.18 Architecture of proposed splicing detection approach based on
InverseRenderNet [151]. 146

5.19 Architecture of binary classifier employed in the proposed method. 148

5.20 ROC curve obtained with proposed InverseRenderNet-based approach
on synthetic splicing dataset. 149

5.21 Confusion matrix obtained with proposed InverseRenderNet-based
approach on synthetic splicing dataset. 150

5.22 ROC curve obtained with proposed InverseRenderNet-based approach
on 98%-confidence splicing dataset. 151

5.23 Confusion matrix obtained with proposed InverseRenderNet-based
approach on 98%-confidence splicing dataset. 151

5.24 Confusion matrix obtained with proposed InverseRenderNet-based
approach on CASIA2 dataset. 152

5.25 ROC curve obtained with proposed InverseRenderNet-based approach
on CASIA2 dataset. 152

6.1 Logic flow-chart of proposed ensemble forgery detection approach. . 157

6.2 U-net architecture of “Base2” forgery localization model. 158

6.3 Architecture of FusionForgery model. 160

6.4 Region coherence analysis between forgery segmentation map B and
keypoints positions. 160

6.5 A copy-moved image with matching clusters X and X′. H is the
transformation matrix between the points coordinates of the two
clusters. 162

6.6 Overview of Base3 method: light-based splicing detection procedure 163

xv

6.7 ROC curve obtained with proposed ensemble approach on
SynthOutForgery dataset. 165

6.8 Architecture of “Base CNN” forgery detection model. 167

6.9 Comparison of confusion matrices (0: pristine, 1: forged) obtained on
SynthOutForgery with different approaches in the ablation analysis. 168

6.10 Multi-class Confusion matrix obtained with the proposed ensemble
method on SynthOutForgery. The classes are 0: pristine, 1:
copy-moved (forgery type 1), 2: spliced (forgery type 2). In this
evaluation, we didn’t consider the images predicted as “unknown-type
forged” (27.2% on the total of test images). 169

6.11 Examples of source (gray) /forged (white) regions maps correctly
predicted by the proposed source region retrieval method in
copy-moved images. Figs. a - c show the input images, while the
predicted maps and the corresponding ground truth are shown in
Figs. d - f and g - e, respectively. Finally, Figs. g - h show the results
of the keypoints-based method. 171

6.12 Examples of source (gray) /forged (white) regions maps wrongly
predicted with proposed source region retrieval method in
copy-moved images. Figs. a - c show the input images, while the
predicted maps and the corresponding ground truth are shown in
Figs. d - f and g - e, respectively. Finally, Figs. g - h show the results
of the keypoints - based method. 172

A.1 Descriptors of key points extracted from an image. 193

A.2 Laplacian of Gaussian’s response to blobs with different scales at
σ = 1. 193

A.3 Left: Creating scale-spaces for each octave. Right: The process of
calculating DoGs. 194

A.4 Finding maxima and minima in DoGs for each pixel compared to its
26 neighbors. 195

A.5 Orientation histogram computation. 197

xvi

ABSTRACT ITALIANO

Questa tesi presenta un approccio d’insieme unificato - “ensemble” - per il rileva-

mento e la localizzazione di contraffazioni in immagini digitali. Il focus della ricerca è su

due delle più comuni ma efficaci tecniche di contraffazione: “copy-move” e “splicing”.

L’architettura proposta combina una serie di metodi di rilevamento e localizzazione di

manipolazioni per ottenere prestazioni migliori rispetto a metodi utilizzati in modalità

“standalone”. I principali contributi di questo lavoro sono elencati di seguito.

In primo luogo, nel Capitolo 1 e 2 viene presentata un’ampia rassegna dell’attuale

stato dell’arte nel rilevamento di manipolazioni (“forgery”), con particolare attenzione

agli approcci basati sul deep learning. Un’importante intuizione che ne deriva è la

seguente: questi approcci, sebbene promettenti, non possono essere facilmente con-

frontati in termini di performance perché tipicamente vengono valutati su dataset per-

sonalizzati a causa della mancanza di dati annotati con precisione. Inoltre, spesso

questi dati non sono resi disponibili pubblicamente.

Abbiamo poi progettato un algoritmo di rilevamento di manipolazioni copy-

move basato su “keypoint”, descritto nel capitolo 3. Rispetto a esistenti approcci

simili, abbiamo aggiunto una fase di clustering basato su densità spaziale per filtrare le

corrispondenze rumorose dei keypoint. I risultati hanno dimostrato che questo metodo

funziona bene su due dataset di riferimento e supera uno dei metodi più citati in

letteratura.

Nel Capitolo 4 viene proposta una nuova architettura per predirre la direzione

della luce 3D in una data immagine. Questo approccio sfrutta l’idea di combinare

un metodo “data-driven” con un modello di illuminazione fisica, consentendo cos̀ı di

ottenere prestazioni migliori. Al fine di sopperire al problema della scarsità di dati per

xvii

l’addestramento di architetture di deep learning altamente parametrizzate, in partico-

lare per il compito di scomposizione intrinseca delle immagini, abbiamo sviluppato due

algoritmi di generazione dei dati. Questi sono stati utilizzati per produrre due dataset

- uno sintetico e uno di immagini reali - con lo scopo di addestrare e valutare il nostro

approccio.

Il modello di stima della direzione della luce proposto è stato sfruttato in un

nuovo approccio di rilevamento di manipolazioni di tipo splicing, discusso nel Capitolo

5, in cui le incoerenze nella direzione della luce tra le diverse regioni dell’immagine

vengono utilizzate per evidenziare potenziali attacchi splicing.

L’approccio ensemble proposto è descritto nell’ultimo capitolo. Questo include

un modulo “FusionForgery” che combina gli output dei metodi “base” proposti in

precedenza e assegna un’etichetta binaria (forged vs. original). Nel caso l’immagine

sia identificata come contraffatta, il nostro metodo cerca anche di specializzare ulteri-

ormente la decisione tra attacchi splicing o copy-move. In questo secondo caso, viene

eseguito anche un tentativo di ricostruire le regioni “sorgente” utilizzate nell’attacco

copy-move. Le prestazioni dell’approccio proposto sono state valutate addestrandolo

e testandolo su un dataset sintetico, generato da noi, comprendente sia attacchi copy-

move che di tipo splicing. L’approccio ensemble supera tutti i singoli metodi “base” in

termini di prestazioni, dimostrando la validità della strategia proposta.

xviii

ABSTRACT

This thesis presents a unified ensemble approach for forgery detection and lo-

calization in digital images. The focus of the research is on two of the most common

but effective forgery techniques: copy-move and splicing. The ensemble architecture

combines a set of forgery detection and localization methods in order to achieve im-

proved performance with respect to standalone approaches. The main contributions of

this work are listed in the following.

First, an extensive review of the current state of the art in forgery detection,

with a focus on deep learning-based approaches is presented in Chapter 1 and 2. An

important insight that is derived is the following: these approaches, although promis-

ing, cannot be easily compared in terms of performance because they are typically

evaluated on custom datasets due to the lack of precisely annotated data. Also, they

are often not publicly available.

We then designed a keypoint-based copy-move detection algorithm, which is

described in Chapter 3. Compared to previous existing keypoints-based approaches,

we added a density-based clustering step to filter out noisy keypoints matches. This

method has been demonstrated to perform well on two benchmark datasets and out-

performs one of the most cited state-of-the-art methods.

In Chapter 4 a novel architecture is proposed to predict the 3D light direction

of the light in a given image. This approach leverages the idea of combining, in a data-

driven method, a physical illumination model that allows for improved regression per-

formance. In order to fill in the gap of data scarcity for training highly-parameterized

deep learning architectures, especially for the task of intrinsic image decomposition,

we developed two data generation algorithms that were used to produce two datasets

- one synthetic and one of real images - to train and evaluate our approach.

xix

The proposed light direction estimation model has then been employed to design

a novel splicing detection approach, discussed in Chapter 5, in which light direction

inconsistencies between different regions in the image are used to highlight potential

splicing attacks.

The proposed ensemble scheme for forgery detection is described in the last chap-

ter. It includes a “FusionForgery” module that combines the outputs of the different

previously proposed “base” methods and assigns a binary label (forged vs. pristine)

to the input image. In the case of forgery prediction, our method also tries to fur-

ther specialize the decision between splicing and copy-move attacks. If the image is

predicted as copy-moved, an attempt to reconstruct the source regions used in the

copy-move attack is also done. The performance of the proposed approach has been

assessed by training and testing it on a synthetic dataset, generated by us, comprising

both copy-move and splicing attacks. The ensemble approach outperforms all of the

individual “base” methods, demonstrating the validity of the proposed strategy.

xx

Chapter 1

INTRODUCTION

The worldwide spread of smart devices, which integrate increasing quality cam-

eras and image processing tools and apps, the ubiquity of desktop computers, and the

fact that all these devices are almost permanently connected with each other and to

remotely located data servers through the Internet, have given ordinary people the

possibility to collect, store, and process an enormous quantity of digital visual data on

a scale just until recently quite unthinkable.

As a consequence, images and videos are often shared and considered informa-

tion sources in several different contexts. Indeed, a great number of everyday facts

are documented through the use of smartphones, even by professionals [93]. Massive

sharing of visual content is enabled by a variety of digital technologies [108], such as

effective compression methods, fast networks, and specially designed user applications.

These latter, in particular, include Web platforms, e.g., social networks such as In-

stagram, and forums like Reddit, that allow the almost instantaneous spreading of

user-generated images and video. On the other hand, user-friendly, advanced image

editing software, both commercial like Adobe Photoshop [2], and free and open source

like GIMP [5], not to mention smartphone-based apps that can apply basic image

manipulations on the fly1, are widely available to everyone.

All these factors have contributed to the spread of fake or forged images and

videos, in which the semantic content is significantly altered. Sometimes this is done for

malevolent purposes, such as political or commercial ones [129]. As of 2022, all of the

major social network platforms are struggling to filter manipulated data, and so avoid

1For example Instagram, Snapseed, Prisma Photo Editor, Visage, and many more.

1

that such fake content, often directed to the most vulnerable users, could “go viral”

[134]. Legal conundrums are also emerging regarding where to put the responsibility

for the possibly damaging fallout of fake content spreading [52].

Such problems arise because most times humans are easily fooled by forgeries,

and in some cases, they are even demonstrably not able to detect any but the less

sophisticated modifications undergone by visual content, due to the so-called change

blindness cognitive effect [127, 103]. Thus, there is a need for carefully designed digital

techniques.

Semantic alterations can be carried out on all types of digital media content, like

video or even audio. However, the focus of this thesis is on methods and algorithms

specifically designed for forgery detection on still images, which is by far the most

common case.

In this context, the general problem of determining if a given image has not

been altered so as to modify its semantics is referred to as image authentication, or

image integrity verification [75]. If the emphasis is put on expressly establishing if a

given image has undergone a semantic alteration, or forgery, the same application is

often referred to as image forgery detection in the literature [46].

In this introductory chapter, we first give a broad overview of the considered

application, mainly to fix some definitions. Next, we provide a concise summary of

the most commonly found types of forgery. We finally provide the organization of the

remainder of the thesis and its main contributions.

1.1 Image forgery detection applications

Image forgery detection can mainly be divided into two categories: active and

passive. Sometimes these methods also give a localization of the altered/forged areas

of the image, and even provide an estimate of the original visual content.

Active methods for general visual content protection are based on technolo-

gies like digital signatures [104] and digital watermarking [15]. Digital signatures are

2

straight cryptographic methods that authenticate the bit-stream. However, the authen-

tication in this case is fragile, meaning that any change in the bit-stream invalidates

the signature, and thus it is more tailored to alternative applications such as copyright

protection. This is instead not desirable when verifying image semantic content, since

alterations that does not change the semantics (e.g., a mild amount of compression)

should be tolerated. In other words, the authentication method needs to be robust.

Another serious drawback is that the signature has to be attached as metadata to the

image, and therefore could be discarded or sometimes even substituted by a malicious

user.

To address these shortcomings, robust methods have been proposed. For exam-

ple, robust digital watermarking embeds security information in the content itself by

controlled imperceptible modifications. Ideally, an attacker should not be able to alter

the content of an image without changing the embedded watermark, while being able

to safely apply selected processing such as compression, thus allowing the consumer of

the image to detect the manipulation.

Note that variants of the aforementioned approaches exist, namely, robust sig-

natures (based on content hashing techniques) [128, 122], and fragile watermarking

[35]. Sometimes these variants have been cleverly combined [95]. However, they still

inherit the same problems associated to metadata presence and fragility that we have

just outlined.

In the end, active methods have the advantage of being able to convey side

information which may be useful to detect the attempted forgery, but they need the

watermark or signature to be computed on the unaltered version of the image, ideally

at acquisition level. This in turn requires the capturing camera to have specific hard-

ware and/or in-board post-processing software. Furthermore, any entity interested in

verifying the semantic content of a given image must be able to decode the authen-

tication information, which means having access to the (private or public) key of the

creator and/or the watermark detector. However, leaving to potentially malicious users

both the security information embedding and the decoding devices is usually a threat

3

to the entire framework2.

As an alternative, a trusted third party could be set up to verify the image

integrity, for instance, a Web site able to embed and decode the watermarks. How-

ever, scalability problems prevent such architecture to be feasible for everyday im-

ages shared on the Internet. Recently, commercial solutions based on the blockchain

paradigm aimed at image integrity have also appeared to get rid of the trusted third

party presence, though little details at the present time are known of their inner work-

ings3. Blockchain methods can be considered active only in the sense that a block

needs to be generated for each protected image, but the image itself is released with-

out modifications. To the best of the authors’ knowledge, however, these techniques

are not widespread for forgery detection. That may well be because, while the dis-

tributed ledger paradigm does not need a trusted third party, fragile authentication

is unavoidable since in the end blockchain has a cryptographic core, and furthermore

scalability issues are still present. Still, new solutions are being proposed in this field,

for instance [73].

Conversely, passive methods do not need the presence of additional data at-

tached to the image, and they are commonly known as forensics [112]. Their goal is

thus to tell whether an image is authentic or not by analysing only the image itself,

searching for traces of specific processing undergone by the image. In the case of mas-

sively shared, ordinary images, this solution has been traditionally considered the only

feasible one.

Often, an attacker can apply one or a set of successive manipulations on the

target image, either on the whole image or only on a tampered region, such as a seman-

tic alteration, e.g., object duplication, JPEG compression, geometric transformations,

2The on-board image signature algorithm developed by Nikon, for example, has been long com-

promised [3]. Another high profile case is Blu-Ray, which protection scheme used a combination of

cryptography, digital signatures, and watermarking [9]

3For example, Photo Proof Pro by Keeex [7] and Numbers Protocol [8]

4

up-sampling, filtering, e.g., contrast enhancement, and so on. When this chain of ma-

nipulations is used by an attacker to disguise the original forgery it is referred to as

anti-forensics.

The task of determining the history of attacks that a target image has undergone

is sometimes called image philogeny [99]. Of course, this is a more challenging problem

than simply telling apart pristine and forged images, as it involves the detection of

multiple kind of attacks while also determining the order in which they were performed.

Let us consider, for example, a scenario in which the attacker can perform three different

manipulations, and assume for simplicity that each attack is applied at most once. The

number N of possible processing histories is thus the sum of simple dispositions of k

attacks from the possible three, as in:

N =
3∑

k=0

D3,k =
3∑

k=0

3!

(3− k)!
= 16 (1.1)

Note that k = 0 means that the image is pristine. As can be observed, the number of

possible histories grows exponentially with the number of available attacks. A possible

solution can be found in [23, 88, 89], where the authors formulated the problem of

determining the processing history as a multi-class classification problem. Therein,

each of the N histories corresponds to a class, and a fusion-decision algorithm tries to

combine the outputs of multiple forgery detection methods by means of an agreement

function, which aims to give a higher weight to decisions on which more forgery methods

agree and less to the ones on which there is less consensus.

As a final note, there is another possible forensics application, that is the trust-

worthy attribution of the visual content to its creator, for example, the device that

generated the image. The forensics traces could be present all the way back at the

acquisition level (e.g., the camera-specific acquisition noise, known as Photo Response

Non Uniformity [49], or PRNU) down to the post-processing stage (that is, after the

original image has been stored in digital form) [75].

Sometimes, however, forgery detection follows the “in-the-wild” assumption that

5

Figure 1.1: An example of a copy-move forgery, taken from MICC-F600 dataset [14].
One of the front towers is a surreptitious duplicate.

the creator of a particular image is not safely attributable to any entity, and thus it is

to be considered coming from a possibly anonymous, unreliable source.

1.2 Image forgery types

We now present the most common forgeries and manipulations found in the

context of the just discussed applications.

1.2.1 Copy-move

The copy-move forgery is performed by copying one or more regions of an image

and pasting them in the same image in different locations. Copy-move forgeries are

typically used to hide information or to duplicate objects/people, thus severely altering

the semantic content of the target image. An example of copy-move forgery is shown

in Fig. 1.1, where the right building tower has been inserted as a copy of the left one.

1.2.2 Splicing

This forgery is similar to copy-move, with the difference that the pasted re-

gions/objects are cut from one or more other images. A splicing forgery can be done

in order to hide some content, or to show a fake situation. For example, in Fig. 1.2, we

6

Figure 1.2: A high-profile, in-the-wild example of a splicing forgery, that widely circu-
lated online in 2004. The figure of Jane Fonda, captured in an unrelated 1972 photo,
has been spliced into a pre-existing John Kerry picture, taken in 1970 (image taken
from [20]).

can see an image in which two famous people are depicted together, but the picture

has been shown to be the composition of two different images.

1.2.3 Inpainting

This kind of attack consists in filling a region or a “hole” in the image with

plausible content. Inpainting is typically employed to restore damaged patches in

images. However, it can also be used by potential attackers as a malicious means to

hide information from an image, or to remove a visible watermark. The filled region

can either be copied from another part of the image, or synthesized with a specific

algorithm, such as a GAN network (Generative Adversarial Network [53], see also

below). Note that, in the former instance, this attack can be thought as a particular

instance of copy-move.

A particularly interesting instance of inpainting is the reconstruction of deleted

parts of faces, such as the eyes or the mouth. Promising results in this regard have

been obtained by Nvidia [92] (an example is shown in Fig. 1.3).

7

Inpainting techniques are also employed in video processing, usually with the

aim of restoring lost regions in frames or compression artifacts. In this case, temporal

correlation between frames can be exploited as well as spatial relationship between

pixels to fill gaps. In [72] an object-aware, occlusion-aware approach is presented that

aims to reconstruct the complete shape of the occluded objects and their appearance

in the video frames. Another important contribution by the authors is the release of

a large-scale benchmark dataset for video object inpainting: Youtube-VOI. In [106] a

novel framework for video inpainting is proposed that adopts an internal learning strat-

egy. Unlike previous methods that use optical flow for cross-frame context propagation

to inpaint unknown regions, the authors show that this can be achieved implicitly

by fitting a convolutional neural network to known regions. In [157], a two-stream

encoder-decoder network involving attention modules ([141]) is designed to detect in-

painted regions in videos, by using both spatial and temporal clues.

As it is strictly related to inpainting, we also mention the manipulation technique

referred to as outpainting. In this case, an image or frame is extended by generating

content/objects beyond the boundaries of the original image. The goal of this technique

is to construct a new image that is realistic and ”natural” with respect to the starting

one. As for the case of inpainting, this technique is also applied to video content, where

the motion of objects (estimated e.g., with optical flow algorithm [61]) can sometimes

be used to infer the content ”outside” the frame. Some recent works about image

and video outpainting can be found in [51] and [32], respectively. In the former, a

transformed-based U-net architecture is proposed to perform generalized outpainting

for images. In contrast to previous approaches, which mainly focused on horizontal

extrapolation, this method is able to extrapolate content all-side along a given image.

In the latter, a method based on background estimation and optical flow is presented

to transform portrait videos (9:16 aspect ratio) into landscape videos (16:9).

8

Figure 1.3: An example of inpainting generated with Nvidia interactive demo at
https://www.nvidia.com/research/inpainting/index.html. The inpainting mask (i.e.
the deleted region that must be filled by the inpainting algorithm) is shown in yellow
in the left image. The original image is taken from the MICC-F2000 dataset [14]

1.2.4 DeepFake

DeepFake is a particular kind of manipulation in which a deep learning model

is employed to synthesize fake content in images or videos. The “deep” term is used

to emphasize the difference between the pre-Deep learning era, in which this task was

manually done by experts with professional editing tools, and the current era, in which

this is automatically done by deep models, such as GANs [53].

A typical application of DeepFake consists of the substitution of the face of a

person with the face of another person (usually a VIP) taken from a second image

or video (see Fig. 1.4). In another kind of DeepFake attack, usually referred to as

reenactment, the facial expressions of a donor person are extracted and applied to the

target person in another image or video. This is usually done by means of synthesis

methods (namely, GANs) or by merging algorithms that aim to maximize the realism

of the obtained face.

9

https://www.nvidia.com/research/inpainting/index.html

Figure 1.4: Examples of DeepFakes generated from different sources (image courtesy of
https://www.cs.albany.edu/ lsw/celeb-deepfakeforensics.html). The first column shows
the original frames, while the other five show the DeepFakes obtained with 5 different
sources.

10

https://www.cs.albany.edu/~lsw/celeb-deepfakeforensics.html

Even if most of the time DeepFakes are created for entertainment/comedy pur-

poses, there have been cases in which a VIP was shown to be in certain situations in

which he/she never was, thus damaging his/her image and leading to scandals. As a

matter of fact, the vast majority of DeepFakes with the latter purpose are created in

the video domain, because this kind of media usually poses a bigger semantic threat to

the attacked person/VIP, especially when an appropriate audio track is available and

can be matched to the facial expressions of the talking person. Furthermore, a number

of easy-to-use tools have been developed to produce convincing DeepFakes, such as

FakeApp, faceswap-GAN, and that available at [4]. As a consequence, many DeepFake

videos have been spreading through the Web in the last few years.

DeepFakes for static images are less common, but they are still worthy of interest

for forgery detection purposes. Note that this kind of attack can be thought of as a

particular case of splicing.

1.2.5 CGI-generated images/videos

This approach consists in creating photo-realistic content as the rendering out-

put of a computer graphics-generated 3D scene. Thanks to the recent advances in

the video-gaming industry and in the GPU technology, techniques such as ray-tracing

have been much easier to implement, thus making it possible to reach realism levels

unthinkable just a few years ago (an example is shown in Fig. 1.5). In fact, in recent

years a certain number of graphic engines, such as Unity and the Unreal Engine, have

been developed and can be freely (or rather cheaply) used by everyone. So, more and

more convincing rendered images/videos are being produced every day.

Consequently, the images generated through these engines can be almost indis-

tinguishable from images taken with a real camera, and, of course, this can be used for

malicious intents by potential attackers that can use these renderings to depict false

scenes. It is worth noticing, though, that in the case of CGI generated content a certain

level of expertise is still required in order to produce convincing results.

11

Figure 1.5: A photo-realistic CGI rendered image (created and published on reddit by
user u/Hary1495

In this case, there is no clear parallels with splicing since the generated scene is

generated from scratch.

1.2.6 GAN-based face synthesis

A particularly popular kind of fake content generation approach consists in the

creation of a realistic face of a completely non-existing person, employing the previously

cited GAN networks. This is done by feeding the trained model with a vector of random

sampled noise, which is converted by the model to a realistic face different from any

existing one. Again, as for the previously discussed CGI-generated content, the fake

image is synthesized anew instead of being copied from another source.

In [70], Nvidia proposed a GAN architecture - styleGAN - that is considered

a breakthrough for this technology. Interactive demos based upon this original work

can also be found on the Web, such as [6]. Apart from artifacts that can sometimes

still be noticeable in the background, the produced faces are really convincing and

12

Figure 1.6: An example of face portrait generated with styleGAN.

they are hardly detectable as fake by the naked eye. Subsequently, improved versions

of the architecture in [70] were introduced: namely styleGAN2 [71] and styleGAN3

[69]. These new models improved the original one by generating better-quality images

and suppressing some of the artifacts that were initially present. Also, they allow

for better disentanglement during the generation process between features such as

pose, background, and clothing. An example of a high-resolution face image generated

with styleGAN is shown in Fig. 1.6. As can be seen, the result is remarkable from a

qualitative point of view.

1.2.7 Diffusion models

Diffusion models are a class of generative models used in computer vision that

can be used for tasks such as image synthesis, denoising, and inpainting. Remark-

ably, they have been shown to generate content even more realistic than GANs [34].

These models were inspired by diffusion processes in physics, e.g., diffusion of heat

in materials. These kinds of models are trained in a two steps process, involving a

13

Forward diffusion stage – Markov chain

Reverse diffusion stage

Figure 1.7: Schematic view of generative diffusion models.

forward diffusion stage and a reverse diffusion stage. In the first stage, an image is

gradually degraded, e.g., by adding Gaussian noise iteratively, by means of a Markov

chain. Typically, the degradation stage involves a large number of iterations (even

hundreds or thousands), each only slightly degrading the current image. In the second

stage, the model tries to learn how to reverse the degradation process, with the goal

of reconstructing the original image. This is usually done by employing a U-Net that,

given the image at a certain iteration of the Markov chain, learns to predict the image

at the previous step, i.e., a less noisy one. Note that the assumption of the degradation

process being Markov (i.e., the next state only depends on the current one) is what

makes the problem of reversing the degradation tractable. Once the model has been

trained, the generation of an image consists in reversing the diffusion process from a

completely degraded image - the input noise sample - to a clean one - the generated

high-resolution image. An overview of the process is shown in Fig. 1.7.

Diffusion models were first introduced by Sohl-Dickstein et al. in 2015 [133].

However, it was not until 2020, with the publication of several works, that these models

14

gained significant attention and adoption. Notably, the work presented in [58] played a

pivotal role in the widespread adoption of these models, in particular, for commercial

use. OpenAI’s paper [102] was one of the earliest works to introduce text-guided

diffusion models. Among the most recent and promising products that rely on these

models for image synthesis are OpenAI’s DALL-E2 4 and MidJourney 5. These models

takes as input a text prompt, which is typically a high-level description of the wanted

semantic content and style of the target image that will be generated. These models are

more sophisticated than the previously introduced unconditioned diffusion models, as

they must also encode and process the input text and use it to condition the diffusion

process itself. An example of image generated with DALL-E2 is shown in Fig. 1.8.

As can be seen, not only the generated image is realistic, but also the content and

style match the input prompt. In Fig. 1.9, a photo-realistic image generated with

MidJourney is shown. In this case, a highly detailed text prompt was given to the

model, which allowed for the synthesis of a specific scene. Note also how the handling

of lighting and reflections in the glass is quite convincing.

1.3 Thesis organization

The thesis’ contents and contributions are organized as follows.

Chapter 2 is a comprehensive review of the most recent state-of-the-art forgery

detection methods, with a focus on deep learning-based approaches. The authors found

that the current state of the art in forgery detection faces a major challenge in terms

of performance comparison due to the use of custom, non-public datasets by many

authors.

Chapter 3 presents a novel keypoint-based copy-move detection algorithm that

outperforms a state-of-the-art method by incorporating a density-based clustering step

to filter out noisy keypoint matches.

4https://openai.com/product/dall-e-2

5https://www.midjourney.com/home/

15

An astronaut riding a horse in
photorealistic style.

input

output

Figure 1.8: Example of text prompt and corresponding image generated with DALL-
E2.

Chapters 4 and 5 explore the concept of forgery detection based on the light

properties of the target image. In particular, Chapter 4 introduces a novel deep learning

architecture for predicting the 3D light direction in an image. To overcome the issue of

limited annotated data, two datasets were generated - one synthetic and one real - to

16

photography shot trough an outdoor window of a coffee shop with neon sign
lighting, window glares and reflections, depth of field, grandpa in a suit with a
cup of coffee in his hands sitting at a table, portrait, kodak portra 800, 105 mm
f1. 8

input

output

Figure 1.9: Example of text prompt and corresponding image generated with MidJour-
ney V.5.

train and evaluate the model. The light direction prediction model is then employed

to design a novel splicing detection approach in Chapter 5.

Chapter 6 describes an ensemble scheme that combines the outputs of the previ-

ous methods and outperforms them in terms of detection performance. The approach

also tries to predict the type of forgery (splicing or copy-move), and in the case of

copy-move attacks, it also tries to reconstruct the source regions used in the attack.

The proposed approach is trained and tested on a synthetic dataset that includes both

copy-move and splicing attacks, demonstrating its effectiveness.

Finally Section 6.4 draws some conclusions and highlights some possible future

directions ad challenges.

17

Chapter 2

DEEP LEARNING BASED FORGERY DETECTION METHODS - A
PERFORMANCE COMPARISON

Since the early 2000s, a lot of approaches to image forgery detection have been

proposed, and many excellent reviews can be found [75, 46, 63, 143, 117, 20]. However,

deep learning techniques have proved to be a game-changer in many digital processing

and computer vision applications, especially when a lot of training data are available

[83, 155, 91]. Even if in the case of forgery detection this last assumption is not quite

satisfied, nonetheless, as discussed in what follows, the best performance on standard

benchmarks were obtained with algorithms that leverage Deep Learning (DL) models

in one or more phases.

For this reason, we feel that it is very important to keep track of the break-

throughs made possible by deep learning in forgery detection. In particular, it is cru-

cial that some degree of comparison between DL-based techniques that follow different

perspectives is carried out. This is especially true since it is challenging to identify

future (and even present) trends in a technology like DL, which is already vast and

still expanding at a tremendous rate.

In this analysis, we mainly focus our discussion on copy-move and splicing detec-

tion methods. Even if these attacks are not as recent as GAN-based ones or DeepFakes,

they are very prominent in the literature and lots of algorithms for their detection are

still being published to date. These forgeries are so diffused mainly because of their

simplicity, both related to end-user employment and experimental dataset building,

but also because they are a very immediate threat to the image semantics integrity.

Even so, we discuss some of the DeepFake detection techniques, insofar as this

kind of attacks can be seen of a special (and more sophisticated) case of splicing, or at

18

least a manipulation that usually involves a source or donor image/video and a target

one. However, since this work aims to give an overview on image forgery detection

methods, we do not deal with approaches specifically designed for video content, i.e.,

that cannot be applied to single images. In fact, lots of video-specific methods leverage

temporal clues between different frames or, if available, inconsistencies between the

audio track and the facial expressions. Also, as frames in a video are often strongly

compressed, even techniques that operate on a per-frame level can hardly be applied to

high-quality images. We refer the reader interested in DeepFakes seen as a standalone

researc h field to the review in [142].

As stated before, this analysis focuses on the most recent methods for copy-

move and splicing detection that are specifically based upon DL. To better highlight

the contrast with the previous state-of-the-art, it is useful to first recap in Section 2.1

several of the established forensics-based techniques for image forgery detection that

instead follow traditional approaches. Then, we describe the key-aspects of the deep

learning based methods, including their applicability and their limitations, and we

illustrate their properties such as the kind of attacks they can detect and whether they

give or not the localization of the forged areas. We concurrently discuss the datasets

on which they were trained/tested. Then, in Section 2.8 we discuss their performance,

which are also directly compared when possible (that is, tested on the same benchmark

dataset). Finally, in Section 2.9 we follow up on the previous discussion by drawing

some conclusions, while providing some insights on what we think should be the most

important future research directions.

2.1 Traditional passive forgery detection methods

We now briefly discuss some of the “conventional” passive image forgery detec-

tion approaches that have been proposed since the early 2000s. Of course, what we

present here is not an exhaustive, nor in-depth review of these methods. For a more

comprehensive review, see [46], [63], and [143].

19

Conventional passive methods leverage techniques from the fields of signal pro-

cessing, statistics, physics, and geometry, and are usually also referred to as “classic” or

“traditional” approaches. In fact, they come from the pre-DL era that we are currently

in and, as such, they require little or no data to perform an eventual training phase.

Those that still require data for training are typically based on traditional machine

learning techniques, such as clustering, support vector machines (SVM), linear/logistic

regression, random forests, and so on. Here, we still consider those as belonging to the

classic methods, because they rely on models that have a relatively small number of

parameters, and therefore do not require a great amount of data for training.

We think it is useful to briefly describe some of the traditional approaches, for

the following two reasons:

1. As mentioned above, they typically do not require much data for training (or

none, even). Of course, this is an advantage when it is hard or impossible to col-

lect a good amount of labelled images to train a high parameterized deep learning

model. Also, most of these methods are not as computationally expensive, and

thus can be easily deployed on commercial low-power hardware, like smartphones

or tablets;

2. Some of the core ideas and principles these methods rely on can also be used in

conjunction with deep learning models, in order to accelerate the training phase

or to achieve better performance. For example, in [120], a SVM model is used

as final classification phase applied on the output of a CNN. In [118], a YCbCr

color space conversion and a DCT transform are used as pre-processing stages

before a CNN. In [136], a CNN takes as input the Laplacian filter residuals (LFR)

computed on the input images rather than the images themselves. All of these

methods, among several others, are discussed in detail in Chapter 2.

Passive traditional methods can be usually grouped into five main categories.

We discuss each separately in the remainder of this Section.

20

2.1.1 Pixel based

These methods rely on the fact that certain manipulations introduce anomalies

that can affect the statistical content of the image at the pixels level. Some of these

anomalies can be detected in the spatial domain, while others in the frequency domain

or in a combination of both.

For copy-move attacks, it is common to observe a strong correlation between

copied regions in the image but, due to the fact that these can be of any size and shape,

it is computationally infeasible to explore the whole space of possible shape/size com-

binations. The authors of [50] have proposed a method based on the Discrete Cosine

Transform (DCT). In particular, they divided the image into overlapping blocks and

applied a DCT on each block. The DCT coefficients were used as feature vectors that

describe each block. Duplicated regions then were detected by lexicograpycally ordering

the DCT block coefficients and grouping the most similar ones. Another approach, pro-

posed in [114], consisted in applying a Principal Component Analysis (PCA) on image

blocks’ features, and then comparing blocks representation in this reduced-dimension

space. These approaches have been shown to be robust when minor variations in the

copied regions are performed, like additive noise or lossy compression. However, in

general these methods do not perform well in the case of geometric transformations

like rotation or scaling.

Thus, let us consider now a situation in which a geometric transformation is used

in order to make a copy-move attack more convincing. Geometric transformations usu-

ally involve some form of interpolation between neighbouring pixels, in particular, the

most common techniques are bilinear or cubic interpolation. Depending on the chosen

technique, a specific correlation pattern between these pixels is created. Statistical

methods are then employed with the aim of finding these patterns in order to detect

regions in which a geometric manipulation has been employed. An example of this

approach is described in [113].

An example of frequency-based forgery detection is [45]. To detect spliced re-

gions, the authors observed that, even if the boundary between the spliced region

21

and the original image can be visually imperceptible, high-order Fourier statistics are

affected by this kind of manipulation and thus can be used for detection.

Another common type of methods, specifically designed for copy-move attacks

detection, are the key-point based methods. They typically require the following steps:

1. Key-points extraction. Key-points are variously defined as “points of interest” of

the image, for example, local minima or maxima, corners, blobs, etc. Some of the

most commonly employed key-points extraction processes include the well-known

Scale Invariant Feature Transform (SIFT) [94], Speeded Up Robust Features

(SURF) [18], or Features from Accelerated Segment Test (FAST) [123];

2. Descriptors extraction. One or more feature vectors (descriptors) are extracted

from each key-point. Usually, these vectors are a compact description of the

region in the vicinity of the key-point. In addition to the SIFT/SURF feature

values, Histogram of Gradients (HOG) and the FAST-based ORB [123] are other

common ones;

3. Descriptors matching. In this step, descriptors are compared according to a

distance (or a complementary similarity) function. If the distance of two or more

descriptors is below a certain threshold, a match between these descriptors is

declared;

4. Filtering step. In this phase, some form of filtering of the matching results is done

in order to rule out weak matches. This can be done by different criteria, such as

Lowe’s ratio [94], in which a match is considered valid only if the distance between

the two most similar descriptors is considerably smaller than that between the

two next-best ones. Other criteria can be employed, for instance, based on the

spatial relationship between the key-points.

One of the most cited key-point based methods for copy-move detection was proposed

by Amerini et al. in [14]. The authors showed that these methods are quite robust even

against rotation and scaling, but the performance are not as good when the copy-moved

22

regions are too uniform. In fact, in this case only few key-points can be extracted, and

consequently the matching phase provides weak results.

2.1.2 Format based

Usually, images captured by a digital camera are encoded in JPEG format.

This means that the image is divided into 8×8 pixel blocks, which are then DCT

transformed and quantized. As a consequence, specific artefacts are generated at the

border of neighbouring blocks. The authors of [96] observed that image manipulations

like copy-move or splicing result in alterations in the JPEG artefact pattern, and

proposed a method in which they used a sample region (which is supposed authentic)

of the target image to estimate the JPEG quantization table. Then, they divided the

image into blocks, and a “blocking artefact” measure is computed for each block. A

block is considered tampered if the score given by this measure is sufficiently distant

from the average value on the whole image.

Obviously, a key limitation of these methods is that they are based on specific

assumptions on the format of the stored image (e.g., JPEG), and therefore they are

not universally applicable.

2.1.3 Camera based

The basic idea exploited by these methods is that every digital camera leaves

a particular “footprint” or “signature” on each image they generate. This fact can

also be useful to tie an image to a specific capturing device. In [49], the authors used

a set of images taken by a known camera to estimate the parameters of the already

mentioned PRNU, which is a camera specific multiplicative term that models the result

of in-camera processing operations. These PRNU parameters are also extracted from

the target image, which is supposed to be taken with the same camera, and compared

with the previously estimated ones. The idea is that, if a splicing operation from

a different camera type has been made, this results in a discrepancy between the

estimated parameters.

23

One of the obvious limitations of this method is that it is camera-specific: this

means that a different training set of images must be used for each type of camera in

order to build its specific PRNU model. Also, this method is effective just for those

splicing attacks in which the spliced region is extracted from a source image taken with

a different camera with respect to the one used to acquire the target image, which is

not always the case.

The authors of [65], instead, leveraged chromatic aberration to detect image

forgeries. The phenomenon of chromatic aberration arises from the fact that photo-

graphic lenses are not able to focus light of different wavelengths on the same point

on the camera sensor. In fact, from Snell’s Law, the refraction index of a material

depends on the wavelength of the incident light too. As a consequence, each point of

the physical scene is mapped, in the RGB color channels, into points that are spatially

slightly shifted one from another.

So, the authors of [65] built a model that approximates the effect of the chro-

matic aberration and estimated its parameters. Forged regions usually show inconsis-

tencies with the estimated model, and can thus be detected. In this case as well, the

main drawback is that this method is camera-specific. In fact, different cameras have

different chromatic aberration levels (that typically depend on the kind of lenses), and

consequently it is hard to set a specific threshold for the anomalies detection, if the

camera from which the target image was taken is not known a priori.

2.1.4 Lighting based

Typically, when an attacker performs a copy-move or splicing attack, it is hard

to ensure that the lighting conditions of the forged region is consistent with that of

surrounding image. Compensating for this effect can be hard even using professional

software like Adobe Photoshop. Therefore, the basic idea of lighting (or physics) based

techniques is to build a global lighting model from the target image, and then to find

local inconsistencies with the model as evidence of forgery.

24

Different lighting models were proposed, such as those in [64] and in [68], for

which least squares error approaches are usually employed for parameters estimation.

Techniques like Random Sample Consensus (RANSAC) [48] are sometimes used in

order to make the model more robust to outliers. The positive aspect of these methods

is their wide applicability. In fact, they are not based on assumptions on the type

of camera that generated the image, and they can be used to detect both copy-move

and splicing attacks. However, a downside of these methods is the fact that they are

dependent on the physical context present in the image. In particular, if the lighting

conditions are quite complex (for example, an indoor scene), a global lighting model

cannot be estimated, and thus the method cannot be applied.

2.1.5 Geometry based

Geometry-based methods rely on the fact that a copy-move or a splicing attack

usually results in some anomalies in the geometric properties of the 3D scene from

which the image is obtained.

The authors of [67] proposed a method to estimate the so-called principal point

through the analysis of known planar objects, and observed that this is usually near

the center of the image. They also showed that a translation of an object in the image

plane results in a shift of the principal point, and thus this fact can be used as evidence

of forgery.

Another interesting approach was proposed in [66]. The idea was to consider

specific known objects such as billboard signs or license plates and make them planar

through a perspective transformation. Once the reference objects are viewed in a

convenient plane, it is possible, through a camera calibration, to make real world

measurements, which can then be used to make considerations on the authenticity of

the objects in the image.

Of course, these methods are based on strong assumptions on the geometry of

the 3D scene. They also require a human knowledge of the real world measures taken

from specific objects in the image. Consequently, their applicability is quite limited.

25

2.2 Deep Learning based methods

Deep learning methods have gained a huge popularity over the past decade, and

indeed they have been applied to a great variety of scientific problems. This is due to

the fact that they were shown to perform particularly well for classification problems,

as well as regression and segmentation ones. For certain tasks, these methods can even

outperform humans in terms of accuracy and precision. Another crucial factor that

contributed to the spread of deep learning techniques is that, in contrast to conventional

machine learning approaches, they do not require the researcher to manually create

(craft) meaningful features to be used as input to the learning algorithm, which is

often a hard task that requires domain-specific knowledge. Deep learning models, such

as Convolution Neural Networks (CNN), are in fact capable of automatically extract

descriptive features which capture those facets of the input data that are well tailored

to the task at hand.

For image forgery detection too, deep learning techniques have been explored

in the recent literature in order to achieve better accuracy than previously proposed,

traditional methods. The techniques that we are considering can be grouped in distinct

categories according to different criteria, in this case:

A) Type of detected forgery: copy-move, splicing, or both;

B) Localization property, i.e., if the considered algorithm is able to localize the forged

areas. In the case of copy-move detection, an additional question is whether the

algorithm is able to distinguish between the source region and the target one,

i.e., the region on which the source patch is pasted. This property is useful, for

example, in a scenario in which a forensic expert is asked to analyze a tampered

image in order to interpret the semantic meaning of a copy-move attack;

C) Architecture type, that is, the algorithm is an end-to-end trainable solution, i.e.,

without parameters that need manual tweaking, or not.

As discussed in Section 1.2, DeepFakes can be regarded as a particular case of

splicing attack. However, given the fact that the vast majority of DeepFake forgeries

26

involve face manipulations, methods that aim to detect these attacks can leverage

domain-specific knowledge (e.g., face detection algorithms) that cannot be used by

generic splicing detection algorithms. As such, different datasets need to be used

for evaluating and comparing these methods. Therefore, DeepFake forgery detection

performance cannot presently be directly compared with generic splicing detection

algorithms. Consequently, in this analysis, the discussion on the former methods is

conducted separately, both in regard to employed datasets and experimental results.

For our analysis, we have selected some papers among the most recent ones that

we think are particularly representative of those that can be categorized into at least

one of the distinct groups that we have outlined above. A further principle that we

have used for this selection is performance driven, with the added objective of being

able to do a meaningful comparison (when possible), given in Section 2.8. These papers

are described in some detail in this Section, with the further objective of identifying if

any trend in the DL overall architecture choice is emerging.

In particular, we have used the criteria A) and B) above to sort the presentation

order of the papers. Methods [13], [41], [11], [107], and [146] are copy-move-only

specific, and are presented first in Section 2.5. Then, methods [120], [156], [118], [97],

[136], [146], [36], and [29], that are for both splicing and copy-move detection, are

discussed next in Section 2.6.

Besides this first separation through criterion A), we sort the techniques in each

subset using criterion B), namely, [13], [11], and [146] in the first subset possess the

localization property and are discussed first. For the second subset, such property is

verified by [156], [118], and [29], which are thus described before the others. Note that

methods [11] and [146] are also able to distinguish the source from the target regions.

Regarding criterion C), which is not used for sorting the methods, we remark

here that end-to-end architectures can be found in [146], [97], [41], and [107]. The

reader is referred to Table 2.5 for a summary of the characteristics of the described

techniques.

Finally, DeepFake specific methods are discussed in Section 2.7.

27

For each described method, we also discuss:

• which datasets, whether public benchmark or custom ones, were used for the

experimental validation;

• the performance on one or more of the above datasets: metrics like accuracy,

precision, localization accuracy, etc..

Therefore, before diving into a detailed overview of the deep learning based

approaches, we proceed to first briefly describe in Section 2.3 some of the benchmark

datasets that are typically used in the most recent literature for evaluation of the con-

sidered forgery detection methods, and summarize the employed performance metrics.

Finally, we mention that there are several other interesting works that involve

deep learning as a means for forgery detection, which are however not analyzed here

because their characteristics are a mixture of the representative works that we have

selected. Some examples are [100] and [145]. In the former, a copy-move-only method

is presented that leverages a pre-trained AlexNet (on ImageNet) as a block feature

extractor and a subsequent feature matching step that allows to localize the copy-moved

regions. In [145], instead, a technique for both copy-move and splicing detection is

discussed, which is built upon the formulation of the forgery detection and localization

task as a local anomaly detection problem. In particular, a “Z-score” feature is designed

that describes the local anomaly level and is used in conjunction with a LSTM (long

short term memory) model that is trained to assess local anomalies. Note that both of

these methods satisfy criterion B), i.e., they give the localization of the forged areas.

As a further remark regarding the property of being able to distinguish between

source and target regions, we refer the reader to the recently published work in [16],

in which a DL-based method is presented as a post-processing phase to distinguish

between source and target regions, starting from the localization mask of any copy-

move forgery detection technique.

28

Table 2.1: Benchmark copy-move/splicing datasets overview.

Dataset Ref. Manipulations pristine/forged Resolution Format

CASIA1 [38] copy-move, splicing 750/975 384 × 256 JPG

CASIA2 [38] copy-move, splicing 7491/5123 320 × 240 – 800 × 600 JPG, BMP, TIF

DVMM [140] splicing 933/912 128 × 128 BMP (grayscale)

MICC-F220 [14] copy-move 110/110 480 × 722 – 1070 × 800 JPG

MICC-F600 [14] copy-move 440/160 722 × 480 – 800 × 600 JPG, PNG

MICC-F2000 [14] copy-move 1300/700 2048 × 1536 JPG

SATs-130 [27] copy-move 10/120 various JPG

CMFD [28] copy-move 0/48 various JPG, PNG

CoMoFoD [139] copy-move 4800/4800 various JPG, PNG

DS0-1 [31] splicing 100/100 2048 × 1536 PNG

Korus [76] copy-move, splicing 220/220 1920 × 1080 TIF

DFDC [37] DeepFake 1131/4113 (videos) various MP4

FaceForensic++ [125] DeepFake 1000/1000 (videos) various MP4

Celeb-DF [87] DeepFake 590/5639 (videos) various MP4

VIPCup 2022 Test1/2 [1] general AI-synthesis 2500/2500 various JPG, PNG, TIF

TrueFace [21] Face synthesis 100k/110k 1024 × 1024 / 720 × 720 JPG, PNG

R-SMUD [116] Social media up/download 900/- various JPG (6 comp. levels)

V-SMUD [116] Social media up/download 512/- various JPG

2.3 Datasets description

We now provide a list of the benchmark datasets used by a majority of the

discussed copy-move, splicing, and DeepFake detection methods. For completeness,

we also mention some datasets related to more general AI-synthesis detection and for

tracking the social media sharing of images. In fact, most of the deep learning methods

that are presented in what follows are trained and/or tested on either one of these

datasets or a custom one built upon the datasets themselves. The main characteristics

of each dataset are summarized in Table 2.1. Evaluation metrics are discussed next in

Section 2.4.

2.3.1 CASIA v1.0 (CASIA1)

[38]: it contains 1725 color images with resolution of 384×256 pixels in JPEG

format. Of these, 975 images are forged while the rest are original. It contains both

copy-move and splicing attacks;

29

2.3.2 CASIA v2.0 (CASIA2)

[38]: it contains 7491 authentic and 5123 forged color images with different sizes.

The image formats comprise JPEG, BMP, and TIFF. This dataset is more challenging

than CASIA1 because the boundary regions of the forged areas are post-processed in

order to make the detection more difficult. It contains both copy-move and splicing

attacks;

2.3.3 DVMM

[140]: it is made of 933 authentic and 912 spliced uncompressed grayscale images

in BMP format, with fixed size of 128×128;

2.3.4 MICC-F220

[14]: it is composed by 110 copy-moved and 110 original JPEG color images.

Different kinds of post-processing are also performed on the copied patches, such as

rotation, scaling, and noise addition;

2.3.5 MICC-F600

[14]: it contains 440 original and 160 tampered color images in JPEG and PNG

formats. The tampered images involve multiple copy-moved regions, which are also

rotated. The image sizes vary between 722×480 and 800×600 pixels;

2.3.6 MICC-F2000

[14]: it consists of 700 copy-moved and 1300 original JPEG images, each one

with a resolution of 2048×1536 pixels;

2.3.7 SATs-130

[27]: it contains 130 images, generated by 10 source authentic images, with

copy-moved regions of different sizes. Various JPEG compression levels are applied,

therefore the images are stored in JPEG format;

30

2.3.8 CMFD

[28]: it is composed of 48 source images in which a total of 87 regions (referred

by the authors as “snippets”), with different sizes and content (from smooth areas,

e.g., the sky, to rough ones, e.g., rocks, to human-made, e.g., buildings) are manually

selected and copy-moved. The authors also provide a software that allows to apply

different post-processing steps on the forged images in a controlled way. The images

are given in JPEG and PNG formats;

2.3.9 CoMoFoD

[139]: this dataset contains 4800 original and 4800 forged images, with copy-

move attacks and post-processing operations such as JPEG compression, noise adding,

blurring, contrast adjustment, and brightness change. The images are stored in PNG

and JPEG formats;

2.3.10 DS0-1

[31]: it contains 200 images, 100 of which are pristine and 100 are forged with

splicing attacks. All the images are in PNG format at a resolution of 2048 × 1536 pixels.

Color and contrast adjustment operations are applied as counter-forensic measures;

2.3.11 Korus

[76, 74]: this dataset is composed of 220 pristine and 220 forged RGB images in

TIFF format. The dataset contains both copy-move and splicing attacks, performed

by hand with professional editing software. The resolution of the images is of 1920 ×

1080.

2.3.12 DFDC (DeepFake Detection Challenge on Kaggle)

[37]: it contains 4113 DeepFakes videos created from a set of 1131 original ones,

involving 66 subjects from various ethnicity and both genders. The video resolution

varies from 180p to 2160p. All the videos are in MP4 format and the employed codec

is H.264;

31

2.3.13 FaceForensic++

[125]: it is an extension of the previous dataset FaceForensic, with a total of

1.8 millions images created with 4 different DeepFake state-of-art generation methods

(DeepFakes [4], Face2Face [138], FaceSwap [77], and NeuralTexture [137]), starting

from 4000 videos downloaded from YouTube. Compared to other previously proposed

datasets, it is bigger by at least one order of magnitude. The dataset contains videos

of different sizes, such as 480p, 720p, and 1080p. The videos are in MP4 format, and

the codec used is again H.264.

2.3.14 Celeb-DF

[87]: the authors of this dataset specifically created it in order to overcome the

lack of realism of a large portion of DeepFake videos in previously published datasets

(such as the original FaceForensic). It comprises a total of 5639 DeepFake videos and

590 pristine videos in MPEG4.0 format (H.264 coded), with different resolutions and a

standard frame rate of 30 fps. The average length is about 13 seconds (corresponding

to a total of more than 2 million frames). Another feature that sets this dataset apart

from previously proposed ones is how it includes a pronounced variety of ethnicity and

equilibrium among genders.

2.3.15 TrueFace

TrueFace [21] is a dataset containing real and synthetic human faces generated

by StyleGAN and StyleGAN2 generative models and shared on three popular social

networks (Facebook, Telegram, and Twitter), for a total of 210k images at a resolution

of 1024× 1024 or 720× 720.

2.3.16 VIPCup2022 dataset

The IEEE Video and Image Processing Cup [1] is a competition organized by the

University of Napoli and Nvidia to develop methods for detecting AI-generated content

in images. In this competition, two test sets were used to evaluate the performance of

32

the candidate methods. The first one comprised 2500 real images (selected from FFHQ

[70], Imagenet [33], COCO [90], and LSUN [148] datasets) and 2500 AI-generated with

different techniques (such as StyleGAN2 [71], StyleGAN3 [69], Inpainting with Gated

Convolution [149], GLIDE [102], and Taming Transformers [42]). The second test

set was also composed of 2500 real images and 2500 fake ones, but in this case, the

techniques used to generate the synthetic images are not disclosed.

2.3.17 V-SMUD and R-SMUD

The R-SMUD (RAISE Social Multiple Up-Download) and V-SMUD (VISION

Social Multiple Up-Download) [116] are two large-scale datasets designed to aid re-

search on tracking the social network origin of online images. Both datasets consist

of images shared up to three times through three social network platforms: Facebook,

Flickr, and Twitter. The R-SMUD dataset contains 50 RAW images extracted from

the RAISE dataset [30], which were cropped to three different sizes and compressed

under six quality factors. The V-SMUD dataset contains 510 JPEG images extracted

from the VISION dataset [130], with 15 images selected from each of the 34 cameras

(excluding one camera due to exceeding the size limit).

2.4 Evaluation metrics

Performance metrics in the considered forgery detection applications are the

same used for binary classification problems. There are two classes, authentic or forged,

that can be attributed either to the whole image or at the pixel level (through appro-

priate masks).

Table 2.2 recaps the terminology for binary classification evaluation using the

so-called confusion matrix. Starting from ground-truth classes and the labels output by

the detection system, the 4 outcomes given as TP, FP, TN, and FN can be counted ac-

cording to the concordance or discordance of the labels with the corresponding classes.

The sum of every element in Table 2.2 is equal to the total number of queries T ,

namely the population (or the number of objects in the ground-truth). Among these

33

T queries, P have a positive ground-truth class and N have a negative ground-truth

class, therefore T = P +N . In forgery detection, as in many other binary classification

problems, each element in Table 2.2 is suitably divided by P or N , and thus express

the corresponding fraction, or rate, as follows:

TPR = TP/P FPR = FP/N

FNR = FN/P TNR = TN/N
(2.1)

Please note that in some papers the R (rate) part can be omitted, however,

there is no possible confusion as the given number is in the [0,1] interval. Given the

outcomes in Table 2.2 and the rates in Eq. (2.1), additional metrics can be obtained

as follows:

precision =
TP

TP + FP

recall = TPR =
TP

TP + FN

accuracy =
TP + TN

T

balanced accuracy =
TPR + TNR

2

F1 score = 2 · precision · recall

precision + recall

(2.2)

An additional metric is the AUC (Area Under the ROC curve). The AUC is the

two-dimensional area under the whole Receiver Operating Characteristic (ROC) curve,

that plots FPR versus TPR varying the decision threshold of the detection algorithm.

These measures, or slight variations thereof, are extensively used in the papers

described in what follows. There are commonly used synonyms for some of them,

for example, the false alarm rate or fallout is the same as FPR and sensitivity is a

synonym for recall. Such occurrences have been adjusted for clarity’s sake.

2.5 Copy-move specific methods

According to the grouping and sorting criteria of the DL-based techniques dis-

cussed in this work, we begin in this Section by introducing copy-move only forgery

34

Table 2.2: Confusion matrix and outcomes.

Ground-truth
classes

Positive (P) Negative (N)

O
u

tp
u

t
la

b
el

s Positive
True

Positive (TP)
False

Positive (FP)

Negative
False

Negative (FN)
True

Negative (TN)

detection methods.

2.5.1 R. Agarwal et al.

The authors of [13] proposed a method specific for copy-move detection that uses

deep learning in conjunction with a segmentation step and further feature extraction

phases. First, the M×N input image is segmented with the Simple Linear Iterative

Clustering (SLIC) procedure [12]. In order to do so, a 5-D feature vector is built

for each pixel, by concatenating its RGB color values and spatial x, y coordinates. A

clustering is then performed on these features, and the segmented patches (referred to

as “super pixels”) are given as output.

Then, multi-scale features are extracted from each super-pixel Sk with a VG-

GNet [132] network. This process involves the following steps:

• Given the segmented image, a binary mask BM for each super-pixel is obtained

as:

BMk(i, j) =

1 if pixel (i, j) ∈ Sk,

0 otherwise

(2.3)

• Let f ∈ RM ′×N ′×D be the output of the first convolutional layer, where M ′, N ′

are the spatial dimensions, and D is the number of output channels. RF (l,m)

denotes the receptive field on the input image in the (l,m) position. A continuous

value mask MConvk ∈ RM ′×N ′
is then computed as follows:

MConvk(l,m) =
1

|RF (l,m)|
∑

(u,v)∈RF (l,m)

BMk(u, v). (2.4)

35

The super-pixel-level feature map gk is obtained by multiplying the output of the

convolutional layer with the mask:

gk(l,m, c) = f(l,m, c) ·MConvk(l,m), c = 1, .., D (2.5)

• The previous steps are repeated for each convolutional stage of the VGGnet. By

using Max-pooling after each convolutional layer, increasingly high-level features

are extracted for each super-pixel (see Fig. 2.1).

Next, a “relocation” phase of the higher-levels features (with lower spatial res-

olution) is employed in order to find a pixel-level position of the features themselves

in the input image. In this way, a set of key-points, with the corresponding multi-level

features, is obtained for each patch.

Finally, a key-points matching phase is performed by comparing their associated

features, and the copy-moved patches are identified by a further comparison of the

super-pixels to which the key-points belong. This procedure is referred to as ADM

(Adaptive Patch Matching) by the authors.

The VGGnet is trained on the MICC-F220 dataset. The same dataset is used

for testing, though it is not specified which portion of it is used for training and which

one is used for testing. The metrics used for evaluation are TNR, FNR, FPR, precision,

TPR (recall), and accuracy. The reported results are:

• TNR: 97.1 %;

• FNR: 9.2 %;

• FPR: 55 %;

• Precision: 98 %;

• TPR: 89 %;

• Accuracy: 95 %.

36

Figure 2.1: In [13] the super-pixel segmentation map is given, along with the target
image, as input to a VGGNet. Features at different levels are extracted for each of the
input super-pixels. Finally, high-level features undergo a so called “relocation phase”
to obtain a localization mask at the original resolution.

Therefore, the reported accuracy of the method is high, but at the cost of a large

number of false positives.

Also, it should be noted that the reported performance is relative to the MICC-

F220 dataset, that only has 220 images, with a limited number of types of copy-move

attacks. For these reasons, results obtained on just this dataset are not as statistically

relevant as methods tested on other, more populated copy-move datasets, such as

MICC-F2000 or CoMoFoD.

2.5.2 Y. Abdalla et al.

The authors of [11] proposed a 3-branches method for copy-move detection. An

overview of the considered architecture is shown in Fig. 2.2, which is in the end based

on a GAN model. To recap, the GAN is composed of two different deep learning

modules: the Generator (G) and the Discriminator (D).

37

• The generator is a Unet that takes as input an image I and gives as output a

forged version of the image itself I ′ = G(I);

• The discriminator is a CNN network that takes as input either an original image

I or a generated image I ′ = G(I). The output is a binary mask, in which each

pixel is labelled as either authentic or forged.

The purpose of D is to discriminate between original pixels and pixels that were ma-

nipulated by G. Instead, G aims to generate forgeries I ′ = G(I), with I ′ ≃ I, in order

to fool the discriminator into wrongly classify the forged areas of I ′ as authentic. The

training of the two modules can be seen as a competitive game between them, at the

end of which the generator is able to create forgeries that are difficult to detect, and

the discriminator is able to correctly classify them.

In addition to the described GAN network, the authors used a custom CNN

model specifically designed to detect similarities between regions (i.e., copy-moved

areas). This CNN is composed of different convolutional layers as well as custom ones

that perform a self-correlation operation on the input features. Then, different pooling

steps are used to extract more compact features that are fed to fully connected layers.

Finally, a mask-decoder layer is used to reconstruct, from the extracted features, a

binary mask that represents the similar regions in the image.

As a final decision step in the forgery detection pipeline, a linear SVM model is

used for classification. The SVM is fed with an input vector that combines the output

of the GAN and the output of the similarity detection CNN. If the image is classified

as copy-moved by the SVM model, an additional mask is given as output by comparing

the two input binary masks obtained by the GAN and the custom CNN, in which not

only the forged areas are labelled, but also the source region used for the copy-move

attack is identified (with a different label).

Two datasets unrelated to forgery detection, namely, the CIFAR-10 [78] and

MNIST [84] datasets, were used to pre-train and test the GAN network. In detail,

the CIFAR-10 dataset contains 60 000, 32×32 color images categorized as 10 distinct

38

Figure 2.2: Architecture of the GAN-based method in [11]. The upper branch imple-
ments a per-pixel binary classificator (forged/pristine), while the bottom one is used
to find similarities between regions. The outputs of these branches are then combined
to obtain the final output mask in which, if the image is considered forged, source and
target regions can be distinguished.

39

classes (airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck), while

MNIST is composed of 60 000 grayscale images depicting handwritten digits. After

the pre-training phase, the other two modules of the detection pipeline were trained

and validated on a custom dataset composed of a total of 1792 pairs of forged and

corresponding authentic images, sampled from MICC-F600 and two other datasets,

the “Oxford Building Dataset” [110] and the “IM” [22].

The obtained detection performances on this composite dataset are as follows:

• F1-score: 88.35 %;

• Precision: 69.63 %;

• Recall: 80.42 %.

In conclusion, it would have been interesting if the authors evaluated the performances

of their method on one of the public benchmark datasets (such as MICC-F2000, or

CASIA2) rather than a custom, composite one. One aspect of this method that should

be further noted is that it is one of the few that gives as output not only a localization

of the forged areas, but also the source regions of the copy-move attacks.

2.5.3 Y. Wu et al.

In this paper, a pure end-to-end deep neural network pipeline (referred to as

BusterNet by the authors) is presented as a copy-move forgery detection solution. A

key aspect of this method, such as in [11], is the fact that it is able not just to give a

pixel-level localization of the copy-move attacks, but it also distinguishes between the

source and the target region.

The detection pipeline is composed of two branches and a fusion module (see

Fig. 2.3):

• The first branch, called Mani-det, is responsible for the detection of manipulations

in the image, and it is composed of the following modules: a feature extractor, a

mask decoder, and a binary classifier.

40

The feature extractor is a standard CNN that coincides with the first 4 blocks of

the VGG16 network [132].

The mask decoder is used in order to restore the input resolution of the image,

via a de-convolution process, and it uses the BN-inception and BilinearUpPool2D

layers [144].

The binary classifier, which is implemented as a convolutional layer followed by a

sigmoid activation function, produces a binary manipulation mask, in which the

pasted patches of the copy-move attacks are localized;

• The second branch, referred to as Simi-det, is used in order to generate a copy-

move binary mask, in which similar regions in the input image are detected. In

particular, the detection process can be summarized as follows: first, a CNN is

used as feature extractor. Then, a self-correlation module is used to compute

all-to-all feature similarities. These are given, as input, to a percentile pooling

unit, which collects useful statistics. A mask decoder is used to up-sample the

obtained tensor to the size of the input image. Finally, a binary classifier is

applied in order to obtain the copy-move mask;

• The fusion unit takes as input the computed features from the two branches. It

is constituted by a convolutional layer followed by a soft-max activation, that

gives as output a three-class prediction mask: pristine, source region, and target

region.

Note that the CNN networks used in the Simi-det and in the Mani-det branches have

the same architecture, but they have different weights, since they are trained indepen-

dently. The same applies for the mask-decoder and the binary classification modules.

In order to train their model, the authors built a dataset of 100 000 images by

automatically performing copy-move operations from source pristine images. For each

tampered image, they built three ground-truth pixel-level masks:

41

• A three-class mask Ms,t with the following labels: pristine, source copy-move,

and target copy-move;

• A binary mask Mman with the following labels: pristine and manipulated. Note

that the source region here is considered pristine;

• A binary mask Msim with the following labels: pristine and copy-move. Note

that the source and target regions are both labeled as copy-move.

The authors adopted the following three-stage strategy for training:

1. Each branch is trained independently. In order to do so, the copy-move mask

Msim and the manipulation mask Mman are used, as ground-truth, for the Simi-

det and Mani-det branches, respectively;

2. The weights of each branch are frozen and the fusion module is trained with the

three-class mask Ms,t as ground-truth;

3. A fine-tuning step is performed by un-freezing the weights of the two branches

and training the whole network end-to-end.

The performances of the method were evaluated on CASIA2. As CASIA2 con-

tains both copy-move and splicing attacks, the authors selected a total of 1313 copy-

move-only images along with their authentic counterparts, thus obtaining a test-set of

2626 images. The authors used the following metrics: precision, recall, and F1 score,

and they computed them both at image level and at pixel level. For the latter, the au-

thors used two different approaches: (i) aggregate TPR, FPR, and FNR over the whole

dataset, and (ii) compute precision, recall, and the F1 score for each image and then

average the results over all of them. The obtained results are reported in Table 2.3.

2.5.4 M. Elaskily et al.

In [41], a method for copy-move forgery detection is presented. It is purely

DL-based, that is, no separate features are pre-computed. In detail, the authors built

a CNN with the following architecture:

42

Table 2.3: Performances of BusterNet [146] on CASIA2.

Eval. method Prec. % Recall % F1 %

image level 78.22 73.89 75.98

pixel level (i) 77.38 59.15 67.05

pixel level (ii) 55.71 43.83 45.56

Figure 2.3: Architecture of BusterNet. [146].Mani-det branch is used to obtain a
classification of each pixel of the input image as forged or pristine. Simi-det branch
instead, aims to find similarities between pixels in the input image. Finally, a fusion
module is employed that takes as input the outputs of the two branches and outputs
a classification for each pixel: source, target or pristine.

43

• Six convolutional layers, each one followed by a max pooling layer;

• A Global Average Pooling (GAP) layer, used to reduce the number of parameters

of the network and to limit the probability of overfitting. This layer acts as a

fully-connected dense layer;

• A soft-max classification with two classes: authentic or forged.

Therefore, the method does not give as output the localization of the forged

regions, but only a global classification of the image. It has been evaluated on 4

benchmark datasets: MICC-F220, MICC-F600, MICC-F2000, and SATs-130. Since

each of the listed dataset is quite too small to train a CNN, the authors merged them

into a new one that could be more suitable for the training phase. The obtained dataset

is thus composed of 2916 images: 1010 tampered and 1906 original.

The authors used the following metrics in order to evaluate the performance of

the method: accuracy, TPR, TNR, FNR, and FPR. The metrics were evaluated by a

k-fold (with k= 10) cross-validation. To elaborate, for each validation a random split

of the composed dataset is performed: 90% for training and 10% for testing. Here, the

10% testing images is selected all from one of the 4 constituting sets of the composed

dataset.

The obtained metrics are presented in Table 2.4, and they are actually really

high. However, we observe that the testing was performed on a small percentage (10%)

of the composed dataset, which contains images from all the 4 benchmark datasets

themselves. As a consequence, test and training images are possibly highly correlated.

Hence, they likely have similar kind of forgeries, that is, with similar dimensions and

types of post-processing operations. It could have been interesting if the authors trained

their model on one dataset, like MICC-F2000, and evaluated it on another one, such

as MICC-F600, in order to better assess the robustness and generalization capability

of the model.

44

Table 2.4: Performance metrics of [41].

Dataset TPR % TNR % FPR % FNR %

MICC-F220 100 100 0 0

MICC-F600 100 100 0 0

MICC-F2000 99.24 100 0 0.76

2.5.5 J. Ouyang et al.

The method presented in [107] is an end-to-end deep learning approach that

features a CNN for binary classification (forged vs. authentic) of the whole image. The

crucial aspect of this approach is the use of the transfer learning technique, as follows:

1. A CNN with the same architecture as AlexNet [79] is used as base-model;

2. The classification layer is changed in order to have two classes as output: au-

thentic or forged;

3. The weights of the AlexNet model trained on the ImageNet dataset [33] are used

as initial weights for the training step;

4. A first training phase is carried out by freezing the weight values of the first levels

of the network;

5. A second training phase (which is often referred to as “fine tuning”) is performed

by de-freezing all the network weights, and by using a smaller learning-rate value

than the one used in the first training step (such as 10−5).

Since, as already mentioned before, these public forgery detection datasets are not

extensive enough for training a CNN without introducing overfitting issues, the authors

artificially created copy-move operations by randomly selecting rectangles from an

image and pasting them in different locations on the same image. By adopting this

approach, they built the following datasets:

45

• “data1”, that contains (i) all the 1338 color images from the UCID dataset [126],

and (ii) a total of 10 000 forgeries obtained by applying the above discussed copy-

move operations to the original images;

• “data2”, that contains (i) all the 8189 color images from the Oxford flower dataset

[105], and, again, (ii) a total of 10 000 forgeries obtained with copy-move opera-

tions on the original images.

The training of the network was done on both the “data1” and “data2” datasets. Data-

augmentation with flipping and cropping operations was performed on the authentic

images in order to balance the distribution of the two classes.

For the model performance evaluation, the “data1”, “data2”, and CMFD datasets

were used. The obtained results are reported in terms of test detection error (which is

the measure complementary to accuracy). They are as follows: 2.32%, 2.43% and 42%

for “data1”, “data2” and CMFD, respectively.

From these results it is clear that, even if the model performs well on the custom

datasets, it has poor generalization capabilities for real-scenario forgeries, such as the

ones contained in CMFD, likely due to its basic approach in generating forgeries.

However, this simple approach could still be useful if richer copy-move datasets were

available, or a more sophisticated algorithm could be used to build synthetic forgeries,

such as a GAN network (see Section 2.5.2).

2.5.6 Amit Doegara et al.

The authors of [36] proposed a simple yet effective method for copy-move de-

tection.

A pre-trained AlexNet model [79] on MICC-F220 dataset is used to extract deep

feature vectors of 4096 elements from the input images (note that, in order to obtain

the feature vector, the classification layer of the AlexNet network is removed).

An SVM model is then fed with the extracted features and used to obtain a

binary classification on the whole image: either pristine or forged.

46

The training process is carried out in two phases (see Fig. 2.4). First, the

pretrained AlexNet CNN is used to extract features both from the pristine images and

from the forged ones. As a pre-processing step, the images are resized to match the

input dimension required by the AlexNet model, which is 227×227 pixels. Then, the

SVM classifier is trained on the obtained dataset of features and corresponding binary

labels.

The authors evaluated their method on the MICC-F220 dataset, and it obtained

the following results:

• FPR: 12.12%;

• TPR: 100 %;

• Precision: 89.19 %;

• Accuracy: 93.94 %.

Even if the accuracy is quite high, there is still room for improvement as the

number of false positives is not really low, especially if compared with other approaches,

such as [14], in which the reported FPR ratio was of 8 %, along with a TPR of 100 %.

A final note on the choice of MICC-F220 dataset for performance evalutation

is in order. This dataset is also used for pre-training the AlexNet model used by the

authors. In the paper, it is not clear which portion of the dataset is used for training

and which for testing. Therefore, it is not possible to evaluate if and how much the

reported results are affected by bias due to correlation between training and testing

sets. In order to clear up these issues, the authors could have used different datasets

for either phase instead, such as MICC-F2000 or MICC-F600.

2.6 Copy-move and splicing methods

We now move on to discuss those methods designed to detect both copy-move

and splicing forgeries.

47

Figure 2.4: Detection approach of [36]. A pre-trained AlexNet is used as feature
extractor. The extracted features, either from pristine or forged images, are then used
to train a SVM classifier to obtain the final decision on the input image: forged VS
pristine.

48

2.6.1 Cozzolino and Verdoliva

In this work, the authors presented a deep learning approach that aims to extract

a camera model noise pattern (referred to as “noise print”) as a means to detect

forgeries.

A digital camera, due to the on-board processing operations carried out on the

signal received from the sensor, leaves on the generated picture a distinctive pattern

of artifacts that are model-specific. This can be exploited, in a forensic scenario, to

estimate from which camera model a certain picture was taken from. This idea can also

be applied for the purpose of forgery detection. For instance, in the case of a spliced

image, if the patch used to create the composition was extracted from a photo taken

by a different camera model, then inconsistencies between the camera model artifacts

could be leveraged in order to detect the tampering.

A useful property of the camera noise pattern is that it is not space invariant.

This means that two patches extracted at different locations from the same image are

characterized by different noise artifacts. By exploiting this property, this method can

also be used for copy-move detection, as the camera noise pattern at the target location

of the copy-move attack is hardly consistent with the expected one at that particular

location.

The authors used the pre-trained denoising CNN presented in [154] as the start-

ing point for their approach. This network was trained with a great number of paired

input-output patches, where the input is a noisy image and the output is its corre-

sponding noise pattern.

In order to estimate the camera model noise print, a further training of the pre-

vious architecture was performed. Since a mathematical model describing the camera

noise pattern is not available, it is not easy to build a dataset with pairs of an input

image and its corresponding desired camera noise print. In order to overcome this

problem, the authors used the following key idea: patches extracted from images taken

with the same camera model, and at the same location, should share similar camera

noise print, while this should not be true for patches coming from different camera

49

models or from different spatial locations. Following this insight, the authors built a

Siamese architecture, in which two identical Residual CNNs (initialized with the op-

timal weights computed in the first training phase) are coupled and the prediction of

one network is used as desired output for the other one and vice-versa. The overall

architecture is shown in Fig. 2.5.

In the training phase, the two CNNs are fed with patches xa
i and xb

i , respectively.

These patches can be:

1. extracted from images taken from different camera models;

2. extracted from images taken from the same camera model, but at different spatial

locations;

3. extracted from images taken from the same camera model, at the same location.

The input pair (xa
i , x

b
i) is assigned, as expected output, a positive label yi = +1 (“sim-

ilar camera noise print”) in the third case, while a negative label yi = −1 (“different

camera noise print”) in the first and second cases. The output of the Siamese archi-

tecture is obtained by means of a binary classification layer that takes as input the

noise print extracted by the two CNNs. This output is then compared to the expected

label yi and the error is back-propagated through the network. This way, the network

is pushed towards generating a similar noise print for patches from the same camera

model (and at the same location), and different ones for patches corresponding to dif-

ferent camera models and/or locations. As a result, the network learns to enhance

the specific model artifacts and discard the irrelevant features, while reducing the high

level scene content of the images. Once the network is trained, the noise print can be

obtained as output of one of the two CNNs from an input target image.

In order to detect and localize forgeries, the authors used the EM (Expectation

- Maximization) algorithm. With the assumption that the pristine and manipulated

parts of the target image are characterized by different camera noise models, the al-

gorithm searches for anomalies with respect to the dominant model. This is done by

50

Figure 2.5: Architecture of the Siamese network proposed in [29]. Two residual net-
works (with shared weights) are trained to extract noise patterns that are given as input
to a binary classificator. The model learns to extract similar noise patterns for positive
labels (patches from same cameras) or different ones for negative labels (patches from
different cameras and/or different spatial locations).

extracting features from the noise print image at a regular sampling grid, that are then

used to train the EM algorithm. A heat-map with the probability of manipulation for

each pixel is given as output.

The authors tested their method on 9 different datasets for forgery detection,

containing many kind of tampering, such as copy-move, splicing, inpaiting, face-swap,

GAN generated patches, and so on. Here, we only report the results on the DS0-1 [31]

and Korus [76] datasets, as they contain only splicing and copy-move attacks (with

possible post-processing operations). The obtained F1-score is 78% for DS0-1 and 35%

on Korus. The authors also computed the AUC score, which is 82.1% and 58.3%,

respectively.

51

2.6.2 Y. Zhang et al.

The authors of this paper proposed the following approach for image forgery

detection:

1. Feature extraction and pre-processing. The image is first converted into the

YCbCr color space, then it is divided into 32×32 overlapping patches. For each

component of the YCbCr space a total of 450 features are extracted from each

patch by leveraging the 2-D Daubechies Wavelet transform;

2. The extracted features from each patch are used to train a 3-layers Stacked

AutoEncoder (SAE), which is an unsupervised model. On top of the SAE, an

additional MLP (Multi-Layer Perceptron) is employed for supervised learning

and fine tuning;

3. Context learning. In order to detect forged regions that span across multiple

32×32 patches, each patch-level prediction from the MLP is integrated with the

predictions of the neighboring patches. Specifically, for each patch p, a neigh-

bouring patch set N(p) with cardinality k + 1 is defined as:

N(p) = [y0p, y
1
p, . . . , y

k
p] (2.6)

where y0p is the output feature of the SAE for the patch p, and yip, with i≥ 1 is

the feature of its i-th neighbouring patch;

4. Finally, a binary output Z(p) (forged/authentic) is obtained by computing the

average of the MLP predictions of the neighbouring patches and comparing it to

a threshold, as follows:

Z(p) =

1 if 1
k+1

∑
yip∈N(p) MLP(yip) >= α

0 otherwise

(2.7)

where the authors set k=3 and α=0.5.

52

For the training and testing stages of the model, a total of 1000 images were

randomly extracted both from the CASIA1 and the CASIA2 datasets. In particular,

770 images were used for training and the remaining 230 for testing. The authors

manually built a pixel-wise ground-truth mask for each image in order to train their

model at the patch level. Likewise, a patch-level ground-truth mask for each of the

test image was also built, as shown in Fig. 2.6.

In order to evaluate the performance, the authors used the following metrics:

accuracy, FPR (fallout), and precision, where the usual rates are again defined at

patch-level.

The method can be applied for copy-move detection, as well as splicing detection.

Note that this method gives a coarse localization of the forged areas (at patch-level).

The reported performance is 43.1%, 57.67% and 91.09% for fallout, precision,

and accuracy metrics, respectively. Even if these performance are not quite satisfactory

at a first glance, it should be considered that these metrics are evaluated at patch level,

and hence are most restrictive than the the same metrics evaluated at image level.

2.6.3 N. H. Rajini

This technique involves two separate CNN models that are used for different

purposes in the forgery detection pipeline. It is able to detect both splicing and copy-

move attacks. A schematic view of the method is shown in Fig. 2.7, and it can be

summarized as follows:

1. Pre-processing stage. The image is first converted into the YCbCr space. Then,

a Block DCT is applied on each Y, Cb, and Cr component. In order to reduce

the effect of the actual image content, horizontal and vertical de-correlation is

computed from the DCT coefficients. Finally, a set of features are extracted from

these values by means of a Markov Random Chain model;

2. Forged/authentic decision. The extracted features are given as input to the first

CNN model, which gives a binary classification of the image as either forged or

53

Figure 2.6: Construction of patch-wise ground-truth from the pixel-level mask as in
[156]

authentic;

3. Type of attack recognition. In the case that the image is recognized as forged,

a second CNN is then employed to classify the type of attack: copy-move or

splicing;

4. Post-processing. If a copy-move attack is detected by the second network, further

features are extracted and used in order to localize the forged regions.

The authors evaluated their method on the CASIA2 dataset. In particular, they

used 80% of the images for training and the remaining 20% for testing. The procedure

was repeated 50 times with differently extracted training and testing sets, and the

reported performance were computed as an average between all the experiments. The

TPR, TNR, and accuracy are used as evaluation metrics.

54

Figure 2.7: Multi-step strategy proposed in [118]. First, features are extracted from
the YCbCr converted image to classify the image as authentic or forged. If the image
is classified as forged, a CNN is used to distinguish between copy-move and splicing
attacks. Finally, in the case of copy-move attack, another feature extraction and local-
ization procedure is employed to obtain a map of the forged regions.

55

Although the described method can provide as output the localization of the

forged areas, the authors only reported performance at a global level (that is, the forged

vs. non forged image assessment). The obtained results are the following:

• 98.91%, 99.16%, and 99.03% for TPR, TNR, and accuracy, respectively, in the

case of copy-move attacks;

• 98.98%, 99.24%, and 99.11% for TPR, TNR, and accuracy, respectively, in the

case of splicing attacks.

The reported performance metrics are really high. In addition, they are mean-

ingful from a statistically point of view, as they are evaluated on the sizable CASIA2

dataset. It would have been interesting, though, if the authors evaluated the localiza-

tion accuracy of their method too, in a similar manner to [156].

2.6.4 F.Marra et al.

The authors proposed a full-resolution, end-to-end deep learning framework for

forgery detection.

Typically, due to limited memory resources, deep learning models, such as

CNNs, are designed to take as input images with small sizes. So, in order to process

high resolution images, either a resize to match the network input size or a patch-level

analysis (with possible overlapping) is needed. For computer-vision tasks in which only

a high level understanding of the image content is required, such as object recognition,

this is usually not an issue. But, for the purpose of forensic analysis, resizing is not rec-

ommended, as it tends to destroy important information that is usually stored at high

frequencies. Patch-level analysis can also be a limiting factor, as usually the context

of the whole image is important as well for forgery detection purposes.

In order to address these problems, the authors built a deep learning framework

that takes as input full-resolution images and perform image-level predictions: “forged”

or “pristine”. The framework is composed of three consecutive blocks:

56

1. Patch-level feature extraction. This is a CNN that takes as input a patch ex-

tracted from the target image and gives as output a feature vector;

2. Future aggregation module. This block takes as input the extracted feature

vectors from the overlapping patches and aggregate them together in order to

obtain an image-level feature. The authors considered different methods for fea-

ture aggregation, such as average pooling, min/max pooling, and average square

pooling;

3. Decision step. It is a binary classification process, that was implemented with

two fully-connected layers.

The whole framework is trained end-to-end. This is not the case for other similar

approaches, in which the patch feature extractor, the feature aggregation module, and

the classification layers are trained independently one from the others.

Note that, when an input large size image is processed during training, a great

amount of memory is required to simultaneously store all the overlapping patches and to

compute their corresponding feature vectors. Also, in the forward pass, the activations

in all the intermediate layers need to be memorized for the computation of the loss

gradients (needed to update the network weights) in the subsequent back-propagation

pass. In order to solve this issue, the authors exploited the gradient check-pointing

strategy [24]. This technique consists in saving the activations only at certain check-

point layers during the forward pass. In the back-propagation phase, the activations

are re-computed up to the next check-point layer and used to compute the gradients.

As a consequence, less memory is required at the cost of an increased computational

time during the back-propagation.

The authors evaluated their method on the DSO-1 and Korus datasets, obtain-

ing an AUC score of 82.4% and 65.5%, respectively.

57

2.6.5 Y. Rao et al.

An overview of the architecture of this method is shown in Fig. 2.8. It starts by

taking an input RGB image of size M×N and dividing it into p×p, p=128, overlapping

patches Xi, i = 1, . . . , T , where T is the total number of patches. Each patch Xi is

given as input to a 10-layer CNN that gives a softmax binary output Yi, as follows:

Yi = f(Xi) ∈ R2 (2.8)

The Yi vector represents a compact feature that describes the patch i. A global feature

vector is then obtained by concatenating the Yi of each image patch:

Y = [Y1...YT] ∈ RT×2 (2.9)

A pooling function (either mean or max) is then applied for each of the 2 dimensions:

Ŷ (k) = Pooling {Y1(k)...YT (k)} , k = 1, 2 (2.10)

Finally, Ŷ is given as input to a SVM classifier that performs a global two-class pre-

diction on the whole image: authentic vs. forged.

A key aspect of this technique is the following: in order to suppress the im-

age perceptual content and instead focus the detection phases on the subtle artefacts

introduced by the tampering operations, the authors initialized the first CNN layer

weights with a set of high-pass filters that are used for residual maps computation in

SRM (Spatial Rich Models). This step also has the benefit of speeding up the training

phase of the network.

The CNN was trained on the CASIA1, CASIA2, and DVMM datasets. This

method can be applied both for splicing and copy-move detection, because the CNN

and the SVM are trained on the aforementioned datasets, which contain both type of

forgeries. Note that the SVM classification step is only used for the CASIA datasets.

The detection performance, in terms of accuracy, is 98.04%, 97.83%, 96.38%

on CASIA1, CASIA2, and DVMM datasets, respectively. These accuracy values are

objectively high. This is true in particular in the case of CASIA2, which is the dataset

58

Figure 2.8: Architecture of the technique in [120]. Overlapping patches are extracted
from the input image and feature vectors are extracted from each of them. A global
feature, computed by averaging along the spatial dimension, is then fed to an SVM
model, which is used to obtain the final global classification: forged VS authentic.

with not only the most images (and consequently it is the most statistical relevant, as

we said before), but it also contains both splicing and copy-move attacks. It should be

noted, though, that this method only gives a global binary prediction on the image,

and no localization of the forged areas is performed.

2.6.6 M. T. H. Majumder et al.

The approach described in [97] is also based on a CNN to classify an image

as authentic or forged. In contrast to the previously discussed methods, however, in

which deep learning networks were composed of a high number of layers, in this case a

shallow CNN model, composed of just two convolutional layers, was employed. Also,

no max-pooling steps were used for dimensionality reduction, as this goal was achieved

by exploiting large convolutional filters, with size of 32 by 32 and 20 by 12 for the first

and the second layer, respectively.

This strategy is based on the following idea: in deep neural networks, complex

high-level features are learnt at deeper levels, while more simple visual structures, such

as edges and corners, are learnt at the first ones. Hence, in order to detect the artefacts

59

introduced by forgery operations, low-level features are more likely to be useful. As a

consequence of this choice, the number of parameters of the network is limited, thus

allowing for training with less over-fitting risk.

The CASIA2 dataset was used both for training and testing. The authors

trained their shallow network multiple times in an independent fashion, using different

pre-processing strategies, such as: raw input (that is, no pre-processing), DCT-based

transformation, and YCbCr space conversion. They showed that the best results were

obtained without any kind of pre-processing.

To further reduce the risk of overfitting, real-time data augmentation was ap-

plied during training, with transformations such as shearing, zooming, and vertical and

horizontal flipping. An accuracy of 79% was obtained with this training strategy, and,

as we said, without pre-processing.

As a comparative experiment, the authors also applied the aforementioned trans-

fer learning technique, by using two deep learning models with a high number of layers

that were pre-trained on the ImageNet dataset: the VGG-16 [132] and the well-known

ResNet-152. Despite the fact that these models perform well on standard image classifi-

cation problems, they were not able to transfer the acquired knowledge to this specific

task, and a substantial underfitting issue was observed in the training phase. The

outcome of this test validated the choice of a shallow model instead of a deep one.

The main contribution of this work is therefore the usage of a shallow network,

in which low-level features are exploited as a mean to detect subtle artefacts generated

by tampering (rather than high-level ones), which thus can be used for the forgery de-

tection task. Also, the authors showed that large convolutional filters can be exploited

in place of max-pooling layers to reduce the number of network parameters, therefore

reducing the risk of overfitting. Despite this, the obtained accuracy still leaves room

for improvement.

60

2.6.7 R. Thakur et al.

In [136], a filtering scheme based on image residuals is exploited. Therefore,

the residuals, rather than the raw images, are fed as input to a CNN network for

classification (as usual, original/forged). This approach is tailored to pursue high

frequencies in the image data, which, as often assumed even by the other approaches,

carry most of the possible tampering traces. The image residuals are computed as

follows:

1. The image is resized at the 128×128 size, and converted to grayscale;

2. The second-order median filter residuals (SDMFR) are then calculated as follows.

Given an image, a first median filtering is applied:

y(i, j) = medw[x(i, j)] (2.11)

where w is a 5×5 window and xi,j is the (i, j) pixel intensity. Then, a second

median filtering is applied to the median-filtered image:

z(i, j) = medw[y(i, j)] (2.12)

Finally, the residuals are obtained by subtracting the second order median filtered

image from the first order filtered image:

MFR(i, j) = z(i, j)− y(i, j) (2.13)

3. Laplacian filter residuals (LFR) are also computed, with the following algorithm.

Let:

K =

0 1 0

1 −4 1

0 1 0

 (2.14)

be the Laplacian kernel filter. The Laplacian-filtered image is obtained by con-

volving the original image with K, that is:

L(i, j) = (x ∗K)(i, j) (2.15)

61

The residuals are then calculated as the difference between the filtered image and

the original one:

LFR(i, j) = L(i, j)− x(i, j) (2.16)

Both the SDMFR and the LFR residuals are fed to the CNN classification

network as a combined input. The CNN model comprises 6 convolutional layers, each

one followed by a max pooling step (except the first one). Two fully connected layers

are then used before the final binary softmax classifier.

The authors trained and tested their network on two different datasets: the

CoMoFoD and the BOSSBase [17]. In the case of the first dataset, a split of 70%

and 30% has been made for training and validation, respectively. In the case of the

second one, as it is composed of 10 000 raw pristine images, the authors applied median

filtering to each image in order to simulate a tampering operation, thus obtaining a

total of 20 000 images (half authentic and half filtered). Then, they split the obtained

dataset into 70% for training and 30% for validation.

The accuracy obtained on both datasets is high: 95.97% for the CoMoFoD

dataset, and 94.26% for the BOSSBase. However, it could have been interesting if the

authors tested their method, without retraining, also on other benchmark datasets for

forgery detection, such as CASIA2, MICC-F2000 or MICC-F600, in order to assess its

generalization capability.

2.7 DeepFake methods

We now present a few of the most recent DeepFake-specific detection methods,

that achieved the best results on the previously introduced datasets for DeepFakes

detection evaluation (see Section 2.3). The selection has been made according to the

criteria previously outlined, namely, suitability for the still images case.

2.7.1 A. Rössler et al.

In [125], the authors developed a method to detect image DeepFakes that is

based upon the XceptionNet architecture proposed by Google in a previous paper [26].

62

The main peculiarity of this model is the employment of a custom layer, called Sepa-

rableConv, whose purpose is to decouple the depth-wise convolution from the spatial

one, thus reducing the number of weights of the model itself.

The detection pipeline can be summarized as follows: a state-of-art face detec-

tion/tracking method [138] is used to extract the face region from the image/frame,

which is cropped as a slightly larger rectangle than the size of the face in order to

include some contextual information.

The obtained bounding box is then fed to a modified XceptionNet for binary

classification. In order to do this, the final fully-connected layer of the original Xcep-

tionNet is substituted with a fully-connected layer with binary output.

The authors adopted the following transfer-learning strategy to train the model:

1. The weights of each layer from the original XceptionNet are initialized with the

ImageNet ones, while the fully-connected layer is random initialized;

2. The network is trained for 3 epochs, with all the weights freezed except the ones

in the fully-connected layer;

3. All the weights are un-freezed and the network is trained for other 15 epochs

(fine-tuning step).

The authors released three different versions of their model: the first one is

trained on uncompressed videos, while the second and the third one were trained on

videos compressed with H.264 codec at quantization levels of 23 and 40, respectively.

We denote these variants as Xception a, Xception b, and Xception c, respectively.

While Xception a achieved the best results on FaceForensic++ dataset, with a

detection accuracy of 99.7%, its performance dropped when evaluated on DFDC and

CelebDF, with accuracy scores under 50% in both cases. Xception b achieved the best

accuracy on DFDC (72.2%), while Xception c performed better on CelebDF, with an

accuracy of 65.5%.

63

2.7.2 Huy H. Nguyen et al.

In this paper [101], a novel forgery detection framework, called Capsule-Forensic

was proposed. Its main feature is that it uses a particular kind of neural network,

Capsule Network (first introduced in [57]), as the binary detector, instead of the more

usual convolutional neural networks.

Capsule Networks were designed in order to efficiently model hierarchical rela-

tionships between objects in an image, and to infer not only the probability of obser-

vation of objects, but also their pose estimation.

The main idea behind Capsule Networks is the concept of “capsule”. A capsule

is an ensemble of neurons that describe a set of properties for a given object. In

contrast to single neurons, in which the scalar output represents the probability of

observation of a certain feature, the output of a capsule is an activation vector, in

which each element represents the activation of one of the capsule’s neurons, i.e., the

value corresponding to the associated feature.

Capsules are arranged in different layers in a hierarchical fashion: a parent

capsules receives, as input, the output of different child capsules. The connections

between child and parent capsules (i.e., which outputs are kept and which are discarded

for the next layer) are not fixed at the beginning, such as for max/average pooling layers

(usually employed in standard CNNs), but they are dynamically computed by means

of a routing by agreement algorithm.

Thanks to this procedure, child capsules whose predictions are closest to the

predictions of certain parent ones become more and more “attached” to these parents,

and a connection can be considered established. The interested reader is referred to

the original paper for a more detailed explanation on how the hierarchical connections

are built.

Among the advantages of Capsule Networks compared to CNNs, a remarkable

fact is that they have less parameters, as neurons are grouped in capsules and the

connections between layers are between capsules and not directly between neurons.

Also, thanks to the presence of pose matrices, they are robust against viewpoint changes

64

under which objects are seen in the image. This is not true for CNNs, that need to be

trained on lots of possible rotations and transformations in order to generalize well to

unseen transformations.

The proposed method is designed for different forensics tasks, such as (i) Deep-

Fakes detection, and (ii) computer-generated frame detection, both for image and video

content.

The detection pipeline (shown in Fig. 2.9) comprises the following elements:

• Pre-processing phase. It depends on the specific forensic task at hand, e.g., for

DeepFakes detection it involves a face detection algorithm in order to extract

the face region, while for CGI detection it consists in patch extraction from the

input image. For video content the frames are separated and fed one by one to

the subsequent steps;

• Feature extraction. This is done by using the first layers of a VGG 19 network

pre-trained on ILSVRC dataset [124]. These weights are fixed during training;

• Capsule Network. It is the core of the detection method, involving three primary

capsules (children) and two output capsules “Real” and “Fake” (parents). The

predicted label is computed as in Eq. (2.17):

ŷ =
1

M

M∑
i=1

softmax

v1

v2

:,i

 , (2.17)

where V1 ∈ RM and V2 ∈ RM represent the output capsules, and M is their

dimension;

• Post-processing phase. As the pre-processing step, this is task-specific: the scores

are averaged among patches for computer generated image detection, or among

frames for video input.

65

Figure 2.9: Overview of method [101]. Note that pre-processing and post-processing
stages are task-dependent, e.g., for DeepFake detection in the former a face tracking
algorithm is used to extract and normalize the face region, while for CGI detection this
step consists in the extraction of overlapping patches.

The achieved detection accuracy is very high on FaceForensic++, with a score

of 96.6%, but it is lower on the more challenging datasets DFDC and CelebDF, with

accuracies of 53.3% and 57.5%, respectively.

2.7.3 Y. Li et al.

In [86], the authors proposed a deep learning method to detect DeepFakes based

on the following observation: typically, DeepFakes generation algorithms tend to leave

distinctive artifacts in the face region due to resolution inconsistencies between the

source image/video and the target one. In particular, GAN-synthesized face images

are usually of a fixed low resolution size and, in order to be applied to the target video,

an affine warping needs to be performed in order to match the source face to the facial

landmarks of the target face. If the resolutions of the source and target videos do not

match, or if the facial landmarks of the target person are far from the standard frontal

view, these artifacts are more and more evident.

The authors trained four different CNNs, namely a VGG-16, a ResNet50, a

ResNet101, and a ResNet152 to detect these kinds of artifact. In particular, they used

a face-tracking algorithm to extract regions of interest containing the face as well as the

surrounding area, which are then fed to the networks. The reason why also a portion

of the surrounding area is included is to let their model learn the difference between

66

the face area, that contains artifacts in the case of positive (fake) examples, and the

surrounding one, which does not contain artifacts.

The authors used the following training strategy. Instead of generating posi-

tive examples by means of a GAN-syntesization algorithm, which in turn requires a

good amount of time and computational resources to train and run, they generated

positive examples by simulating the warping artifacts with standard image processing

approaches, starting from negative (real) images. The processing steps are summarized

as follows:

1. The face region is extracted with a face tracking algorithm;

2. The face is aligned and multiple scaled versions are created by down/up-sampling

the original one. Then, one scale is randomly selected and Gaussian-smoothed.

This has the effect of simulating the mismatch in resolutions between source and

target videos;

3. The smoothed face is then affine-warped to match the face landmarks of the

original face;

4. Further processing can be done in order to augment the training data, such as

brightness change, gamma correction, contrast variations, and face shape modi-

fications through face landmarks manipulation.

The detection accuracy obtained are: 93.0% for FaceForensic++, 75.5% for

DFDC and 64.6% for CelebDF.

2.8 Performance comparison

In this Section we proceed to compare the previously described forgery detection

methods from a performance perspective.

We begin by comparing techniques specific for copy-move and splicing, while

DeepFake detection algorithms are discussed in a separate section. In fact, even if

the DeepFake methods that we previously discussed can be seen as a particular kind

67

of splicing attack, they are mostly performed on faces. As a consequence, DeepFake

detection techniques must be evaluated with datasets specialized on face manipulations,

while the standard splicing datasets, such as CASIA, contain pictures of generic scenes.

Furthermore, these methods can successfully exploit domain specific knowledge, such

as face landmarks, mouth/eyes-based features, and so on, while of course this is not

the case for generic splicing detection algorithms.

2.8.1 Splicing and copy-move methods

In Table 2.5 the performance of all previously discussed copy-move and splicing

detection techniques are reported. For each method, we also indicate the type of

detected attacks (splicing, copy-move, or both) and the capability or lack thereof to

give as output the localization of the forged areas.

As a first comment, from the sparseness of the table it is easy to see that it is

very challenging to compare the different techniques strictly in terms of performance.

This is due to a number of reasons. The first and most obvious one is that approaches

designed specifically for copy-move detection cannot be easily evaluated on CASIA

(both v1.0 and v2.0) datasets, as these also contain splicing attacks (an exception

can be made for method [146], that was evaluated on a copy-move-only subset of the

dataset itself, see Section 2.5.3). In this case, copy-move specific datasets, such as

MICC-F220, MICC-F600, and MICC-F2000 should be considered for evaluation.

The second reason is that the presented methods, especially in the case of copy-

move specific ones, are mostly not trained nor tested on the same benchmark sets.

This is due to the fact that some of the standard datasets are either too small for

training a highly parameterized deep learning model, or contain only naive attacks

(such as MICC-F220, in which copy-moved regions are square or rectangular patches).

For this reason, different authors instead built their own custom datasets to fulfill their

specific requirements, either by merging together the benchmark ones or by artificially

generating them. However, the downside of this approach is the difficulty of comparing

the results achieved by other techniques.

68

Therefore, the comparison between different techniques, when it is possible,

is performed by grouping them on the basis of specific criteria, such as the type of

detected attacks, the dataset used for evaluation, and the localization property.

We start by focusing our analysis on the methods designed for copy-move only

forgeries, then proceed to both copy-move and splicing detection techniques, and con-

clude with DeepFake specific ones.

Table 2.5: Copy-move and splicing detection methods performance comparison

Method Detected Localization CASIA1 CASIA2 MICC-F220 MICC-F600 MICC-F2000 Other perf.
attacks Acc.% Acc.% Acc.% Acc.% Acc.%

[13] copy-move yes - - 99.11 - -
55% FPR

on MICC-F220

[11] copy-move
yes +

- - - - -
88.35% F1-score on

source id. custom dataset

[146] copy-move
yes +

- 76.65 - - -
75.98% F1-score

source id. on CASIA2

[41] copy-move no - - 100 100 99.7 -

[107] copy-move no - - - - -
43% det. error

on CMFD

[36] copy-move no - - 93.94 - - -

[29]
Splicing

yes - - - c - -
82.1% AUC on DS0-1 and

copy-move 58.3% AUC on Korus

[156]
Splicing

block-wise 91.09 a 91.09 a - - - -
copy-move

[118]
Splicing

yes - 99.07 b - - - -
copy-move

[98]
Splicing

no - - - - -
82.4% AUC on DS0-1 and

copy-move 65.5% AUC on Korus

[120]
Splicing

no 98.04 97.83 - - -
96.38% acc.

copy-move on DVMM

[97]
Splicing

no - 79 - - - -
copy-move

[136]
Splicing

no - - - - -
95.97% acc.

copy-move on CoMoFoD

a The accuracy is computed on a dataset obtained by randomly selecting a total of 1000 images from CASIA1 and CASIA2.
b This value was obtained as average of the splicing detection accuracy (99.03) and the copy-move detection accuracy (99.11).
c The accuracy score is sub-par compared to the performance obtained on the datasets used by the authors. This was probably due to the fact
that MICC-F220 is a dataset of small-sized JPEG compressed images, which are very different from the images used to train the method.

2.8.1.1 Copy-move detection methods

We start the present analysis by first comparing methods [41], [13], and [36],

as they have been all tested on the MICC-F220 dataset. The first method achieved a

slightly better accuracy and a considerable better FPR (see Table 2.4) than the other

two, along with a considerably better accuracy. In addition, [41] has been shown to

69

achieve perfect results on MICC-F600 and almost perfect ones on MICC-F2000, which

are more significant evaluation datasets (see Section 2.5.4). However, it should be

considered that [41] only gives as output a global decision on the authenticity of the

image, while [13] also provides the location of the forgery.

Regarding the forgery localization property, it is worth noting that the tech-

niques presented in [11] and [146] allow not only to detect the copy-moved regions,

but also to distinguish them from the source patches used to perform the attack. This

property is useful in real forensic scenarios, in which it is important to understand the

semantic aspects of an image manipulation.

A further interesting feature of [11] is the adoption of a GAN network to generate

increasingly hard-to-detect forgeries, that are used to train the discriminator network.

This is an original approach to address the problem of data-scarcity that plagues many

different existing standard datasets. However, from a performance point of view, it

is hard to compare this method to the other ones, as it was evaluated on a custom

dataset and not on one of the benchmark datasets. This is not the case for [146], which

was evaluated on CASIA2. Note that, even if its accuracy is slightly worse than [97],

it has the source plus target localization property mentioned before, while the latter

gives as output only a global classification on the image.

2.8.1.2 Splicing and copy-move detection methods

These techniques fit the best in a general application context, in which the type

of attack is not known a priori, so it is better to cover as many attacks as possible.

In particular, we consider the methods tested on CASIA2, which is likely the most

significant dataset for copy-move and splicing detection evaluation, both for its sheer

size and for the various applied post-processing operations.

Among the methods that we discussed, the one presented in [118] obtained the

best overall accuracy. It also gives as output the localization of the forged areas, which

as we mentioned is of course relevant in many application contexts. Looking at its

forgery detection pipeline, it features both a pre-processing stage, in this case based

70

on YCbCr space conversion and DCT compression, as well as a post-processing phase

that through further features extraction allows to perform localization. Therefore, the

good performance that it achieved indicate that an exclusively end-to-end deep learning

model, without any pre-processing or post-processing, could be indeed a sub-optimal

choice for the task of forgery detection.

On the same note, another comment can be made about the method in [97].

Even if its performance are worse than the others in terms of accuracy, the proposed

approach is quite interesting because it involves a “shallow” deep learning model. This

allows reducing not only the number of network parameters (and consequently the

training time), but also the risk of over-fitting. This idea is in contrast to the common

trend in computer vision to use ever deeper networks to achieve high accuracy on

specific datasets, that usually cannot be achieved on slightly different ones, which is a

clear indicator of over-fitting issues.

A remark should be made on the approach proposed in [29]. This method has a

wide applicability even outside the field of forgery detection. In fact, the possibility to

extract the noise camera pattern and suppress the high-level scene content of a target

image is of great utility in other forensic scenarios as well as for sophisticated camera-

specific denoising applications. It is important to also note that the authors evaluated

the performance of their algorithm on different datasets, which contain a wide set

of forgery attacks such as copy-move, splicing, inpainting, GAN-synthesized content,

face-swap, etc., thus proving its wide applicability and robustness. Still, it would have

been interesting to have the detection results on other more classic benchmark data,

such as the CASIA2, thus allowing a better comparison with other existing methods.

2.8.1.3 DeepFake detection methods

In Table 2.6, the performance of DeepFake detection methods are reported.

As it can be observed from the table, there is not a method that performs better

on all three considered benchmark datasets. The method proposed in [55] exhibits

remarkable performance on DFDC, with an accuracy of 95.9 %, while the best results

71

Table 2.6: DeepFake detection methods performance.

Method DFDC acc.% FaceForensic++ acc.% Celeb-DF acc.%

[125] (a) 49.9 99.7 48.2

[125] (b) 72.2 99.7 65.3

[125] (c) 69.7 95.5 65.5

[101] 53.3 96.6 57.5

[86] 75.5 93.0 64.6

[39] 81.0 94.0 97.0

[55] 95.9 94.2 -

[150] - 97.3 -

on FaceForensic++ are achieved by the approaches in [125](a) and [125](b). It must be

considered, though, that FaceForensic++ was built by the same authors of [125] (all

three versions). As such, it is, to some extent, expected that these are the methods

that perform better on that particular dataset. The approach in [39] outperformed all

other methodologies on Celeb-DF, by a great margin. Moreover, this method is the

one that best generalizes over the three considered datasets, with a discrete accuracy

of 81 % and 94 % on FaceForensic++, respectively.

One important observation that can be drawn from the this table is that Celeb-

DF remains the most challenging dataset. Despite the significant efforts made by

various state-of-the-art methods, only one of them achieved satisfactory performance

on Celeb-DF. On the other hand, all methods considered in this analysis attained

accuracy scores exceeding 90% on FaceForensic++. This suggests that FaceForensic++

is relatively less challenging than Celeb-DF, and future studies should aim to compare

methods on more difficult datasets.

2.9 Discussion

In this chapter we provided a survey of some of the recent AI-powered methods

(from 2016 onward) for copy-move and splicing detection that achieve the best results

72

in terms of accuracy on the standard benchmark datasets. Several reviews and surveys

have been published on this topic, but most concerned mainly traditional approaches

like those based on key-points/blocks, segmentation, or physical properties. Instead,

we focused our analysis on recently published, deep learning based methods, because

they have been shown to be more effective in terms of performance and generalization

capability than the traditional approaches. As a matter of fact, they are able to achieve

really high accuracy scores on the benchmark datasets.

We separated the performance analysis between copy-move only, both copy-

move and splicing, and DeepFake detection methods. In the case of copy-move only

detection, the method in [41] shows an almost perfect accuracy on all three standard

benchmark datasets (MICC-F220, MICC-F600, and MICC-F2000). The technique

presented in [13] is able to achieve a similar accuracy, while also giving the identification

of both the copied regions and the original ones used as source for the attacks. In the

case of both copy-move and splicing detection, similar results were achieved on the

CASIA2 dataset. In particular, method [118] shows the best accuracy and gives the

localization of the forged regions as well.

Concerning DeepFake detection, from the reported performance (see Table 2.6)

we infer that there is not a clearly winning approach, in particular no method is general

enough for different kinds of DeepFake content. However, we can conclude that the

XceptionNet-based models proposed in [125] are able to achieve better performance on

at least two out of the three considered benchmark datasets.

From a general point of view, it can be easily inferred from the DL-based meth-

ods surveyed in this analysis that a clear trend has not yet emerged. Most works have

been more or less independently proposed, in the sense that the vast possibilities offered

by DL architectures are still being explored, without a clear winning strategy indica-

tion. Nonetheless, we showed that, in the case of splicing and copy-move detection

methods, the best accuracy scores were obtained by the techniques that involve some

form of pre-processing and post-processing in addition to a deep learning network. For

this reason, we think that this appears to be the most promising approach, and so we

73

believe that further research should be conducted on algorithms that combine deep

learning approaches with traditional techniques from all over the field of (statistical)

signal processing.

As a further consideration, it can be noted that in the case of techniques aimed

at “classic” forgery detection (splicing and copy-move), most of state-of-art methods

are able to achieve good performance (on different datasets). Instead, this is not

the case for newer challenges like DeepFake detection, whose methods report accuracy

performance which is still not satisfactory on complex datasets, like Celeb-DF. As such,

further research efforts and ideas still need to be explored in this particular direction.

Further remarks are in order on the problem of performance evaluation of deep

learning based methods. Different authors built custom datasets or merged different

ones in order to train and test their algorithms. While this can be a solution to overcome

issues of data-scarcity (over-fitting), it makes the comparison with other methods more

difficult, or even impossible. Even when the same dataset is used to evaluate different

approaches, the authors do not always specify which and how many images were used

as testing set.

This problem could be addressed by building a custom dataset for training,

and using one or possibly more benchmark datasets in their entirety for testing. In

this way, not only it would be possible to easily compare different deep learning based

approaches, but also to compare them to traditional, non-learning based ones.

Of course, building a custom dataset with thousands of images, with realistic

forgeries and post-processing operations on the forged areas, such as blurring, JPEG-

compression, smoothing, and so on, is not a simple undertaking. For this reason, we

point out that another possible future research direction could be the automation of this

task, for example by leveraging a GAN network (as done in [11]), or encoder-decoder

models such as a Unet.

A wholly different comment on the subject of datasets building should also be

made on the meaning of the forgery attacks currently contained in the benchmark

datasets. As these have always been generated in a laboratory environment (whether

74

manually or not), they typically contain copy-move and splicing attacks that hardly

bring a particular semantic value to the altered images. For example, when a tree

is copied and pasted in a wood landscape, or a cloud is pasted into a blue sky, the

obtained image could hardly be used for malicious purposes. This is clearly not the

case for many manipulated images that can be found on the Web. Let us consider

for example the splicing shown in Fig. 1.2: the fact that the 2004 presidential election

candidate John Kerry was (falsely) immortalized together with pacifist actress Jane

Fonda, who was viewed by many as an anti-patriotic celebrity, could have seriously

influenced the elective campaign (in this case, the image was shown to be false, but

not quickly enough to avoid some damage to the candidate’s reputation).

Of course, in such real-world cases, the context adds a lot to the meaning of

the forgery, and thus it can hardly be taken into account by a forensic tool without

a human supervision. Nevertheless, we feel that it could be interesting to build a

database that collects more realistic, manually made, “in-the-wild” forgeries, like the

ones that routinely spread on social media these last years, and so present potentially

malicious attacks from a purely semantic point of view. Also, this database should

contain, for each forgery, the associated ground-truth mask, in order to better assess

and compare the forgery localization capability of the forensic tools.

We would like to conclude adding a final, more philosophical observation. As is

typical in the case of security-related fields, attackers usually embody, in their attacks,

ideas and “hacks” that are specifically designed to counterpoise the latest state-of-art

detection methods, e.g., so-called adversarial attacks [54, 80, 44], which are used to

fool deep learning classification systems. For example, a possible strategy to achieve

this confusion consists in using a certain CNN architecture as a discriminator in a

GAN model, in order to produce synthesized content which is, by construction, hard

to be detected as fake by that particular CNN. Another interesting example of this

kind involves DeepFake detection: in [85], the authors observed that, in DeepFake

videos, it was common to see unnatural eye-blinking pattern (or no blinking at all),

because DeepFake generation algorithms were trained mostly on pictures of people with

75

open eyes. As expected, attackers immediately adapted DeepFake methods in order to

generate realistic eye-blinking, either by including pictures of people with closed eyes

during training, or by synthetically correct this issue altogether.

As a consequence, it is probably an illusion to consider a certain forgery detec-

tion method to be “safe” forever, even if it has been shown to achieve great detection

accuracy on different datasets. For this reason, we think that continuous research ef-

forts should be made in order to develop methods that can, at least to some extent,

keep up with the attackers’ pace in developing more and more sophisticated and hard-

to-detect forgeries. One possible strategy, that tries to anticipate potential attacker

moves, could be to actively implement new forgery techniques while developing detec-

tion algorithms, this way understanding and leveraging their flaws and thus to allow

the creation of possible counter-measures.

76

Chapter 3

COPY-MOVE DETECTION USING SIFT KEYPOINTS MATCHING

Copy-move attacks, because of their simplicity of implementation, are more

common compared to other forgeries. On the contrary, detecting these manipulations

can be very difficult due to the transformations that might be done on source objects

in the images.

Scale Invariant Feature Transform (SIFT) [94] is a method designed to extract

distinctive invariant features from images. The invariancy of these features to scale

and rotation makes them suitable to be used in copy-move detection, especially in

scenarios in which post-processing transformations are used to disguise the tampering.

The interested reader is referred to Chapter A for an in-depth description of the SIFT

algorithm.

In this chapter, we describe a copy-move detection approach we developed that

is based on SIFT keypoints matching and density-based clustering. Even if keypoints-

based copy-move detection methods have been proposed before (the most famous being

the work by Amerini et al. [14]), we think that our idea of combining it with a density-

based clustering and filtering can be regarded as an important contribution in this

field, as this allowed our approach to outperform the method in [14] on two benchmark

copy-move dataset.

This chapter is organized as follows: first, an overview of the proposed approach

is given and its main computational blocks are detailed, with a particular focus on the

density based-clustering step and the related filtering. Then the experimental results

on two benchmark datasets are reported, including a performance comparison between

our approach and the one by Amerini et al.

77

3.1 Copy-move detection method

An important property of SIFT features is the rotation and scale invariance.

Each of these features is characterized by a distinctive descriptor. These attributes

make SIFT features suitable for detecting similar objects or regions within an image,

which is the main challenge of copy-move detection. In [14], the authors detected copy-

moved areas by extracting SIFT features and matching them based on the descriptors’

distances. Then, hierarchical clustering is performed to group spatially close keypoints

in order to estimate the transformation matrix between the source and target regions

involved in the copy-move attacks.

In this work, we tried to improve their approach by modifying the clustering

step and adding further post-processing in order to filter out weak keypoints matches.

In particular, we used the DBSCAN algorithm to cluster the keypoints based on their

spatial coordinates. The advantages of using this clustering algorithm are (i) the fact

that we don’t need to specify the number of clusters and (ii) its intrinsic capability of

identifying outliers/noise points. This was crucial in our approach to filter out matches

between isolated keypoints.

The steps involved in our method are outlined in Fig. 3.1. The SIFT keypoints

extraction is explained in Chapter A, and the other three steps are described below.

3.1.1 Descriptors matching

This step aims to find the most similar couples of descriptors (Di, Dj). The idea

is that the distance between descriptors of keypoints belonging to copy-moved areas

should be considerably smaller than in the case of pristine areas. The reason for this is

that SIFT descriptors are, by construction, a compact description of the neighborhood

of a keypoint, that is (to a certain extent) scale and rotation invariant. As such, similar

regions - in particular copy-moved areas - will have keypoints with similar descriptors

(supposing that keypoints are found in both regions).

The distances between descriptors are usually computed either with a “brute

78

SIFT
keypoints
extraction

Descriptors
matching

Filtering of
weak

matches by
Lowe’s ratio

Filtering of
matches
based on
DBSCAN

clustering

Forged
/

authentic

input output

Figure 3.1: General steps of our copy-move detection method based on [14].

force” algorithm or a Flann-based algorithm. The latter is faster, but it is not deter-

ministic, and, as such, some matches can be missed. Let us define the distance matrix

between descriptors as:

Dist(i, j) = d(Di, Dj) = d(Dj, Di) ∈ RN×N (3.1)

where N is the total number of descriptors and the distance function d(., .) is the

Euclidean distance. As each element of the matrix can be computed independently, we

wrote a parallelized version of the computation that can be run on the GPU, achieving

a speedup of 30 to 50 times with respect to the non-parallelized version.

3.1.2 Filtering with Lowe’s ratio

For each matching candidate, Mi,j = (Di, Dj), if the following inequality holds,

the match is kept. Otherwise, it is discarded.

d(Di, Dj) < α · (Di, Dk), α ∈]0, 1] (3.2)

79

Where Dk is the second closest descriptor to Di and α is the Lowe’s ratio

constant. This constant, and other parameters of our algorithm are optimized by

means of a grid search (more details are given in Section 3.2).

3.1.3 DBSCAN based filtering

As mentioned before, the DBSCAN has the advantage of not requiring the

number of clusters that need to be detected. Also, this algorithm is able to detect

outlier points automatically, i.e., points that should not be assigned to any cluster.

This property was particularly useful in our approach, as it allows to filter out matches

between isolated keypoints.

Let us consider the example copy-moved image shown in Fig. 3.2. The idea we

leveraged for this filtering step is the following: if a meaningful region (such as a patch

containing an object) is used as a “source” for a copy-move attack and contains enough

keypoints, these will probably be spatially close and it will be possible to assign them

to a unique cluster (e.g., C1 - pink colored points). Similarly, the keypoints of the

corresponding “target” region will be clustered together (e.g., into C2 - green colored

points). In this case, if the descriptors’ matching step is successful, cluster C1 is

correctly “mapped” to cluster C2 and vice-versa.

In the case of weak matches between keypoints, instead, the keypoints in C1 (or

C2), even if clustered together, will probably be mapped to a set of different clusters

or to outliers/noise points (red crossed). Also, each keypoint identified as an outlier

(and the corresponding matched keypoint) should be discarded (blue-crossed).

As mentioned before, we used DBSCAN algorithm for clustering [43] instead

of hierarchical clustering for two main reasons: first, it does not require as input the

number of clusters to be found (such as in K-means algorithm) and second, it is able

to recognize outliers/noise points.

We will now describe, in detail, the filtering algorithm:

1. Perform DBSCAN clustering on the keypoints belonging to valid matches (some

of them have already been filtered out with the Lowe’s condition). Note that the

80

Figure 3.2: DBSCAN-based filtering. The following kind of weak matches are filtered
out: (i) matches involving outliers keypoints (blue crossed) and (ii) matches that are
scattered to multiple clusters/noise (red crossed).

clustering is done on the spatial coordinates (x, y) of the keypoints, not on the

associated descriptor vectors.

2. Consider a valid match m = (ki, kj).

3. If either ki or kj is labelled as noise m is discarded.

4. If either ki or kj belongs to a “small” cluster (whose cardinality is under a thresh-

old T) m is discarded.

5. If m is discarded, both ki and kj are labelled as non valid. The cardinality of the

clusters to which the keypoints belonged is decreased.

6. Repeat steps 2-5 until all the matches are considered and no more matches are

discarded.

7. Finish.

81

Note that our copy-move detection approach depends on a set of hyper-parameters

and thresholds, which should be fine-tuned to obtain the best performance. These pa-

rameters are:

• α: parameter for Lowe’s ratio test (see Section 3.1.2).

• ϵ: DBSCAN parameter used to define each point’s neighborhood size.

• Ns: minimum cluster size; each cluster containing less than Ns points is discarded

and its points are labeled as noise.

• β: this parameter is used to filter out matches whose keypoints belong to the

same cluster and the distance between the associated descriptors is too high:

d(Di, Dj) > dmin + β(dmax − dmin), where dmin and dmax are the minimum and

maximum distances between all the extracted descriptors, respectively.

3.2 Experimental results

In this section, we present the detection results of our proposed method on

three benchmark datasets for copy-move detection evaluation: MICC-F220, MICC-

F600, and MICC-F2000 (See Section 2.3). Subsequently, we compare the performance

of our method with the one proposed in [14] (Amerini et al.). We chose this method

as baseline for comparison as it is one of the most cited and well performing in the

category of keypoints-based techniques and also because our algorithm shares the same

initial steps of keypoints computation and Lowe’s filtering. As such, we wanted to

demonstrate the positive effect in terms of performance of both our successive filtering

strategy and density-based spatial clustering.

Similarly to what Amerini et al. did in their work, we adopted a procedure to

optimize the parameters of our algorithm. In particular, they used a k-fold strategy

(with k = 4 - three folds for training and one for testing).

We instead used a “partial” k-fold training and validation procedure, which can

be summarized as follows:

82

1. from the considered dataset D, k non-overlapping subsets Di, i = 1, .., k are

randomly extracted, each with fixed cardinality N .

2. The parameters of our algorithm are optimized on each subset Di by means of a

grid search procedure that maximizes the F1 score. We denote as θ∗
i , i = 1, .., k

the best parameters for each subset.

3. Each set of parameters θ∗
i is tested on the rest of the dataset D \ Di and the

metrics of interest are computed for each of these runs: F1i, Acci, Preci.

4. The average between the metrics of all k runs are computed, obtaining F1-avg,

Acc-avg and Prec-avg.

As mentioned before, the described parameters selection and validation proce-

dure can be thought of as a partial k-fold validation. The reason is that the k subsets

don’t cover the whole dataset:
⋃k

i=1 Di ⊂ D. We couldn’t use a complete k-fold val-

idation procedure as the search space for our parameters is too big - 4 independent

parameters need to be optimized. As such, the optimizing procedure takes several

hours to run on a subset of just 50 images. Hence, we used this partial k-fold valida-

tion in which we fixed both the number of subsets and the cardinality N of each subset.

In particular, for MICC-F220 we fixed N = 44 and K = 5, while we set N = 80 and

k = 4 for MICC-F2000 and MICC-F600.

In Table 3.1 the obtained averaged accuracy, precision, and F1 score on the three

mentioned datasets are reported, while in Fig. 3.3, Fig. 3.4 and Fig. 3.5 the average

confusion matrices are shown (each entry TP, TN, FP, FN of the matrix was averaged

between the 4 runs). These results demonstrate the high performance of our approach.

In Table 3.2 a comparison of the (average) F1-score obtained with our method

and the one by Amerini et al. on MICC-F220 and MICC-F2000 is shown. Note that (i)

in the table we used the F1 values reported in the original paper and (ii) the results on

MICC-F600 were not present in [14]. Since our method shares the first steps (keypoints

83

MICC-F220 MICC-F600 MICC-F2000

avg. Acc. 0.943 0.908 0.933

avg. Prec. 0.924 0.787 0.895

avg. F1 0.943 0.840 0.906

Table 3.1: Performance of proposed method on MICC-F220, MICC-F600 and MICC-
F2000.

MICC-F220 MICC-F2000

Amerini et al. 0.960 0.869

Proposed 0.943 0.906

Table 3.2: Comparison of avg. F1 score between Amerini et al. [14] and proposed
approach.

extraction and matching) of the algorithm by Amerini et al, and they obtained state-

of-the-art performance detection on these datasets, it is somewhat expected that our

approach also performs well. While the obtained F1 was slightly worse on the MICC-

F220 dataset, our approach was able to improve the F1 by a margin of 3.5% on the

MICC-F2000 dataset which, comprising 2000 images is more general and representative

than MICC-F220 (which only has 220 images). Also, we recall that Amerini et al. used

a k-fold procedure with each subset having a dimension of three-quarters of the original

dataset. This means that they trained their algorithm on sets of 1500 images on the

MICC-F2000 dataset, while we only used sets of 80 images. This means that our

algorithm is more robust in the sense that way fewer images are needed to fine-tune

its parameters.

3.2.1 Future work

As can be seen from the results reported in the previous sections, our method

achieves good performance on three benchmark datasets. Still, especially on MICC-

F600 and MICC-F2000, there is room for improvement.

84

0 1
Predicted

0
1

Ac
tu

al

81 7

3 85

10

20

30

40

50

60

70

80

confusion matrix

Figure 3.3: Confusion matrix of proposed copy-move detection approach on MICC-
F220.

We plan to further extend our method to achieve the following goals:

1. reducing the number of false positives by adding further filtering based on the

DBSCAN clustering results.

2. Adding a localization step, used to precisely segment the suspected copy-moved

areas, also differentiating between the source and the target regions.

3. Reducing the number of parameters of the algorithm, trying to automatically fit

them to the data.

85

0 1
Predicted

0
1

Ac
tu

al

401 39

16 144

50

100

150

200

250

300

350

400

confusion matrix

Figure 3.4: Confusion matrix of proposed copy-move detection approach on MICC-
F600.

0 1
Predicted

0
1

Ac
tu

al

1182 78

51 609

200

400

600

800

1000

confusion matrix

Figure 3.5: Confusion matrix of proposed copy-move detection approach on MICC-
F2000.

86

Chapter 4

LIGHT DIRECTION ESTIMATION

In computer graphics (CG), a 3D scene, comprising meshes, normals, lighting,

and material properties, is projected to a 2D plane (the screen image) by means of

a rendering pipeline, which is based on the pinhole-camera model. This is the equiv-

alent of the physical process that takes place when a picture of a real-world scene is

acquired with a traditional 2D camera. clearly, part of the original information is lost

in the process, as we are projecting elements from a 3D space to a 2D space. The

task of understanding the inherent light conditions of a 3D scene from single images

has gained a lot of attention for numerous applications, such as virtual/augmented

reality, computer vision, and robotics. For example, if we want to visualize a CG

building on top of a real panorama picture, the image lighting should be estimated

in order to render the building in a realistic way. The task of light source estimation

relates to the general problem referred to as inverse rendering. In this case, a set of

orthogonal components of the 3D depicted scene, such as surface normals, light color

and direction, albedo, and material properties are estimated from the 2D image. The

inverse rendering problem, even when limited at the identification of the light source

direction, is an ill-posed problem because, given an image, there are potentially infinite

3D scenes (with associated lighting conditions) that can produce the same 2D image

through a perspective projection. In order to deal with this problem and reduce the

dimensionality of the research space, prior knowledge and/or simplifying assumptions

about the content of the image are usually employed, such as:

• the image contains a person or a face;

• the image is taken in an indoor/outdoor environment;

87

• there is a known number of light sources;

• some of the objects in the scene have known geometry/orientation/material prop-

erties. An example is when a sphere, with known reflectance properties, is in-

serted in the scene that is being captured, to easily infer the light direction based

on the position of the spotlight on the sphere itself.

In recent years, a growing number of researchers have addressed the problem

of outdoor light estimation, and have proposed both model-based and data-driven

approaches. Recently, with the advent of Deep Learning (DL), several methods have

been proposed that leverage this technology. Despite the fact that they have proven

to achieve good performance (see Section 4.1), both for the task of light direction

estimation and sky dome reconstruction, further improvements partially depend on

the availability of a great amount of annotated data, as for the majority of supervised

methods. Even for domain experts, it is very difficult and time-consuming to precisely

annotate a large amount of 2D outdoor images with 3D light direction. In this regard,

only a few datasets have been proposed in the literature to train and evaluate deep

learning methods for outdoor light source estimation (see Section 4.1.3). Also, they

suffer from some limitations, such as:

• limited dimension;

• lack of realism when CG generated;

• ground truth not available or incomplete.

In this chapter, we propose a framework to predict, from a single outdoor image,

the corresponding 3D light direction. The key idea of our method is to combine a data-

driven approach, such as a convolutional network, with a physical illumination model.

Through this model, we manage to embed geometrical information about the scene

that contributes to improving the light prediction accuracy. Hereafter we refer to our

framework as Fusion.

88

In order to properly train and test our architecture, we developed two methods,

that can be used to generate big datasets of realistic images, annotated with 3D light

direction. The first one allows the creation of a dataset of CG-rendered images starting

from a given outdoor 3D scene, with a great number of lighting conditions. The second

one can be used to extract a dataset of limited field of view (FOV) images from 360

degrees panoramas in latitude-longitude format. With the first method it is possible

to generate a CG dataset, hereafter referred to as SynthOut. The second one, instead,

is used to generate images of limited FOV from spherical images. In particular the

Laval High Dynamic Range (HDR) outdoor database [59] has been used to produce a

dataset hereafter referred to as RealOut.

First, we trained and tested our Fusion network on RealOut. Then, in order to

assess the generalization capability of our approach, we fine-tuned and evaluated our

model on SynthOut, as well as on two other benchmark CG public datasets: SID2 [131]

and VIDIT [40]. In a direct comparison, we show that our Fusion model outperforms

a previously proposed state-of-art method on SID2, in terms of average angular error

between the real and the estimated light direction vectors.

In order to evaluate the improvement introduced by the use of the physical

model and the surface normal prediction in the light estimation task, we conducted

an ablation study, in which we compare the performance of the Fusion architecture

and the same network where the surface normal prediction branch and the physical

illumination model have been removed, proving the superiority of the Fusion approach.

The remaining part of this chapter is organized as follows: in Section 4.1 we

give an overview of the main contributions in the field of outdoor light estimation. In

Section 4.2 we describe, in detail, our light estimation architecture, while in Section 4.3

we present the algorithms we developed to generate both our SynthOut and RealOut

datasets. In Section 4.4 we discuss the performance of our deep architecture on Syn-

thOut, RealOut and on two other CG benchmark datasets. In this section, we also

present the results of the ablation study to evaluate the contribution of surface normal

estimation in the proposed light estimation pipeline. Finally, in Section 4.5 we draw

89

some conclusions.

4.1 Related work

In this section, we review some of the research efforts made in the field of light

source estimation in the specific case of outdoor scenes. First, we introduce two widely

cited and known physical models, that describe the appearance of the sky hemisphere

and the sun (in the daytime), in terms of luminance. These models take as input

a set of parameters, such as light and view direction, sky turbidity, light, and sky

color, extracted from a 2D panorama/image and they generate the corresponding 3D

descriptions of the sky. They are really relevant because they are widely used both

in CG and in conjunction with DL methods to estimate 3D light direction from 2D

images (some of them will be presented in Section 4.1.2). Finally, we give an overview

of some of the benchmark datasets commonly used for training and evaluating light

estimation approaches.

4.1.1 Sky and sun models

One of the first important contributions was brought by Hosek L. and Wilkie

A. in [62]. They proposed an analytical, physics-based model to describe the HDR

luminance of the sky hemisphere at daytime, which can be represented by the following

equation:

Lλ(l) = f(θ, ϕ, t, σg) · LM,λ, (4.1)

where:

• f(.) is a function of several parameters (described as follows), and it is indepen-

dent of the wavelength.

• l is a vector representing the 3D view direction in the sky hemisphere, Ω;

• Lλ(l) is the spectral radiance along the view direction l;

• θ is the angle between view and sun direction;

90

• ϕ is the angle between the view direction and a vector pointing to Zenith.

• t is a scalar value that models the sky turbidity;

• σg is a scalar value that models the ground albedo;

• LM,λ is the expected value of radiance in a point randomly chosen in the hemi-

sphere Ω. Note that this term is wavelength-dependent.

This model is an improvement on the one previously proposed by Perez et al. in [109]

and by Preetham et al. in [115], as it introduces the following advantages:

• it handles each spectral component independently (through the term LM,λ);

• it allows to better model specific sky conditions such as sunsets;

• it allows to model the effect of the ground albedo, which was ignored in previous

sky models.

A key aspect of this model is that its parameters can be fit to Low Dynamic Range

(LDR) panoramas to extrapolate an HDR sun description. This is possible because

the sun’s appearance is embedded in the sky-dome modeling through the turbidity

parameter.

Another physical approach to describe outdoor lighting conditions was intro-

duced by Lalonde and Matthews in [82]. In particular, the authors employed two

separate components in order to better describe the sky and the sun’s appearance un-

der various conditions. The Lalonde-Matthews model (LM) can be described by the

following equation:

fLM(l;qsun,qsky, lsun) = fsun(l;qsun, lsun)+

fsky(l;qsky, lsun),
(4.2)

where:

• l and lsun represent the view and sun direction, respectively, expressed as spherical

coordinates;

91

• qsun is a set of parameters controlling the sun shape and color;

• qsky is a set of parameters controlling the sky turbidity and color;

Note that, in order to use this model, a set of 11 parameters (comprising the sun

direction, lsun) must be estimated. An advantage provided by this model, compared

to the one proposed by Hosek and Wilkie (HW model), is its greater expressiveness,

as the sun and sky components are described independently through the fsun(.) and

fsky(.) functions, respectively. Besides, a limitation of this approach is that, in contrast

to the HW model, the HDR sun parameters cannot be fit directly to LDR panoramas.

4.1.2 Light estimation approaches

In [60], Hold-Geoffroy et al. trained a Convolutional neural network to regress,

from a single LDR image, a set of parameters (including sun position, camera field of

view, elevation and sky turbidity) to be fed to the Hosek-Wilkie sky model in order

to obtain the corresponding HDR sky-dome description. This approach combines the

advantages of the HW model, such as having few parameters that can be fit to LDR

images, and the ones provided by DL, i.e., its ability to automatically learn the features

needed to infer the parameters themselves. This is in contrast to previous approaches,

in which the parameters were manually estimated or picked from fixed tables.

In [59] an end-to-end deep learning approach was proposed to solve both the

light modeling and estimation problems. In particular, the authors trained a deep

encoder-decoder model (ED) on the Laval HDR sky database [81] to learn a compact

representation z ∈ R64 of HDR sky panoramas (this is also called latent space repre-

sentation). Then, they used the approach in [152] to convert the panoramas in SUN360

dataset [147] from LDR to HDR. The ED was then employed to extract latent space

representations for each panorama in SUN360. Then, they extracted crops from each

panorama, creating a dataset of limited FOV images and corresponding ground truth

sky latent space descriptions (each crop extracted from a given panorama P is assigned

with the same z vector previously predicted from P with the ED model). Finally, they

92

used this dataset to train two CNNs to predict, from an input limited FOV image,

the sky encoding z and the sun azimuth, respectively. The 360-degree sky panorama

is then retrieved by giving the predicted z vector as input to the decoder branch of

the ED. Note that, in contrast to the method in [60], no physical models were used,

as the light information is automatically encoded in the latent space representation.

Even if the proposed method outperforms the previous state-of-the-art approaches, it

still suffers from some limitations, such as low-quality shadows and texture on the

reconstructed sky.

A similar approach to [59] was proposed by Zhang et al. in [153]. First, an

encoder-decoder network, referred to as PanoNet by the authors, was introduced to

estimate the HDR Lalonde-Matthews model parameters from LDR panoramas. This

network aims to reconstruct 360-degree panoramas, while at the same time, learning

the Lalonde-Matthew model parameters in the bottleneck layer of the network (latent

space vector). In order to constrain the network to encode as much lighting information

as possible in the latent space, a “rendering loss”, measuring the difference between

a synthetic scene rendered with the predicted lighting parameters and the real one

(ground truth), was added to the basic reconstruction loss (between the input panorama

and the reconstructed one). The errors between the estimated LM parameters and the

ground truth ones are also directly included in the loss as a separate term. A second

network, named CropNet, was designed to regress the LM model parameters from

limited FOV LDR images (Note that the previously discussed architecture, PanoNet

could only regress LM parameters from 360-degree panoramas). This network was

trained on a novel dataset, that was created as follows:

1. each panorama in the SUN360 dataset was labeled by regressing its LM param-

eters with PanoNet ;

2. limited FOV cropped LDR images are extracted from each panorama and the

corresponding LM parameters (from the “parent” panorama) are saved.

93

The trained model, CropNet, is then used to predict the LM parameters directly from

LDR images and outperforms previous state-of-the-art approaches. However, this ap-

proach has still some limitations, such as the fact that it frequently predicts LM pa-

rameters that lead to gray skies.

In [131], the authors designed a simple deep learning architecture to predict,

from a single outdoor RGB image, both light source direction, expressed as tilt and

pan angles (between light and camera direction) and light color (as RGB values). The

network architecture involves five sequential blocks, comprising both convolutional and

inception layers, followed by three fully connected branches to output pan, tilt and

color information, respectively. In order to train their model, the authors leveraged

a rendering software (based on Blender) to build a dataset, SID2, of 48k+ synthetic

images along with the corresponding light source information (source direction and

color). The rendered scenes were built by placing objects in the center of surreal

rooms with variously textured walls and backgrounds. The authors showed that their

approach performed well on the generated synthetic dataset but, when evaluated on

real scenes, extracted from the Multi-illuminant dataset [19], its performance was not

as good.

4.1.3 Benchmark datasets

In this section, we analyze the most cited and important datasets that have

been adopted in the field of light source estimation.

• The Laval HDR Sky dataset [81] contains a total of 1850 sky-domes pictures.

As such, it cannot be directly used to train models to predict light directions in

a standard outdoor scene (containing buildings, trees, people, etc..).

• The Laval HDR Outdoor dataset [59] is instead composed of 205 HDR high

resolution (7768 x 3884) outdoor 360-degree panoramas, in different lighting con-

ditions (with sky varying from sunny to cloudy). The main limitation of this

dataset is the fact that it doesn’t include any ground truth data regarding the

94

light direction. As a consequence, the sun’s position in the sky must be man-

ually identified, which can be hard in the case of occluding buildings or cloudy

sky. Also, the number of panoramas in this dataset is still quite limited to train

highly-parameterized deep learning models.

• VIDIT [40] is a CG dataset containing 390 (1024 x 1024) outdoor scenes ren-

dered with Unreal Engine, each one lit with a total of 40 lighting conditions,

combining five possible color temperatures (2500K, 3500k, 4500k, 5500k, 6500k)

and eight possible light directions (N, NE, E, SE, S, SW, W, NW), for a to-

tal of 15600 images. This dataset includes a great variety of lighting conditions

and environments, with a high degree of realism. However, light conditions are

quantized and, especially for the task of light direction estimation, having only

8 possible directions is limiting.

• SID2 [131] is a CG dataset containing 48138 rendered images, with a resolution of

(256 x 256) pixels. The depicted scenes contain multiple objects having different

shading and reflectance properties. As a consequence, complex light interactions

are present. The associated ground truth contains both information about light

direction and color. The major limitation of this dataset is the low resolution of

the images.

• Finally, the SUN360 database [147] contains a total of 67583 360-degree real

panoramas of both indoor and outdoor scenes. It includes annotations and labels

of objects, and consequently, it can be used for general scene understanding tasks,

such as object segmentation and recognition. Unfortunately, this dataset is no

longer publicly available online. We stress the fact that this dataset was one

of the most widely used for the evaluation and comparison of light estimation

methods, both for its size and heterogeneity. As a consequence, it has now become

hard to compare new light source estimation methods with previous state-of-art

approaches, such as [59] or [153].

95

Considering the limited number of publicly available datasets and their limita-

tions in terms of the number of images and/or the resolutions we decided to design

new tools for dataset generation. The methods are described in Section 4.3 and, due

to the fact that they will be released as open-source software, in our opinion, these

methods are an important contribution to both comparison and development of light

estimation methods.

4.2 Light prediction model

In this section, we describe our deep Fusion architecture for 3D light direction

estimation. The main ideas we leveraged in the design of our method are two:

• the information about the 3D orientation of objects in the target image could

help improve the light direction estimation accuracy;

• the use of a simplified rendering model which takes as input the estimated light

direction and surface normals of objects can be used as feedback to improve the

model performances.

The complete architecture is shown in Fig. 4.1: the target RGB image is fed to

the surface normals prediction network. The output of this network, i.e., the surface

normals map N̂ , is concatenated to the input image and fed to the Light estimation

network, which outputs the estimated 3D light vector L̂. This vector is given as input

to a physical illumination model, along with the currently predicted surface normals

map N̂ , in order to obtain an approximation of the luminance map, Ŷ , of the input

image.

The whole architecture is trained end-to-end through the optimization of a

weighted sum of the following two terms:

L1 =
1

N

N∑
k=1

1

3
||Lk − L̂k||1, (4.3)

L2 =
1

N

N∑
k=1

√√√√ 1

HW

H∑
i=1

W∑
j=1

(Yk(i, j)− Ŷk(i, j))2, (4.4)

96

Light
estimation net

Normals
estimation net

RGB image
HxWx3

𝑌 = 𝑵 ∙ 𝑳 + 𝐴

RGB2YCbCr

Concat

𝑵:HxWx3

𝑌 : MxN

𝑳 ∈ ℝ3

𝑳 ∈ ℝ3

Brightness
reconstruction

loss

−

−

MxNx6

𝑌 : MxN

Light direction
loss

Figure 4.1: Our deep light estimation architecture.

where N is the batch size, and H and W are the height and width of the input image,

respectively. L1 measures the error between the predicted light direction L̂ and the real

one L, while L2 measures the reconstruction error of the luminance channel Y in the

YCrCb space: Yk(i, j) and Ŷk(i, j) are, respectively, the real and predicted luminance

intensity values at pixel (i, j) for image k in a given batch. L2 is crucial, as it allows to

back-propagate the error of the reconstructed luminance map to train the weights of

the surface normals estimation network. In this way, the normals estimation network

is trained in a self-supervised manner (see Section 4.4.1 for more details).

As mentioned before, the loss used to train our architecture is the weighted sum

of the two terms L1 and L2:

L = αL1 + βL2, (4.5)

where the α and β coefficients are used to weigh differently the two loss terms.

In the next paragraphs, we describe in more detail the processing blocks used

in our estimation pipeline: normals estimation network, light estimation network, and

physical illumination model.

97

Conv2 Conv3

Previous layer

Concatenation

Conv4

1x1 Conv 1x1 Conv 1x1 Conv

Conv1

Figure 4.2: Modified inception module used by the authors in [25]. Conv1-4 are Con-
volutional layers with different kernel dimensions and/or output depths.

4.2.1 Normals estimation net

For the normals estimation network, we used the architecture derived from [10].

This is the implementation of the 3D normals estimation network proposed in [25],

which was designed to predict depth fields from single, 2D RGB images, in an indoor

environment.

This architecture involves a series of connected modules, each one composed of

different inception layers [135] (described in detail in Fig. 4.2). The main advantage of

inception layers, compared to standard convolutional ones, is the reduced number of

parameters, which allows for building deeper networks, without increasing too much

the dimension of the required training dataset and consequently the computational

cost. The input resolution is (144 x 256) pixels.

Features at different resolution scales are extracted and propagated through

the network by using multiple downsampling layers (Max Pooling), while upsampling

layers are employed to construct the output normals map at the same resolution as the

input image. Hence, the normals are encoded as a (H x W x 3) matrix. The complete

architecture scheme is shown in Fig. 4.3.

4.2.2 Light estimation net

For our light direction estimation network, we adopted a CNN architecture,

which consists of 4 convolutional layers, each one followed by a ReLu activation and

Max-Pooling downsampling, used to halve the spatial resolution of the input features.

98

+

+

+

+

Pool

Pool

Pool

Pool Upsample

Upsample

UpsampleConv Conv

Figure 4.3: Architecture of normals estimation network, as proposed in [25]. The two
gray blocks represent convolutional layers, while all the colored ones represent modified
Inception modules (Fig. 4.2) with different parameters for the internal convolutional
layers.

After the convolutional blocks, we used a global Average Pooling layer in order to elim-

inate the spatial dimension. This is followed by a dense layer with 64 units, connected

to the 3 output neurons, for which we chose a linear activation function. Each of these

outputs corresponds to one of the 3D components of the predicted light vector L̂.

The spatial input resolution is (144 x 256) pixels. This is done in order to match

the output’s dimension of the surface normals map (which is concatenated with the

input image).

In order to avoid overfitting, we also employ a Dropout layer between the Dense

layer and the output neurons. We chose a probability p = 0.5 to drop each neuron in

the training phase.

We tested different modalities to encode the light direction prediction, such as

(sin(θ), cos(θ)) and (sin(φ), cos(φ)) (where θ and φ represent the horizontal and vertical

angles of the sun, such as in Fig. 4.8), but the performance was slightly worse than

with the three neurons outputs strategy discussed before.

As shown in Fig. 4.4, the light prediction network takes as input both the

RGB image and the 3D normal prediction map obtained with the model presented in

99

GAP

𝑳𝑥

𝑳𝑦

𝑳𝑧
32 3x3
Conv +
ReLu

Max
Pool

32 3x3
Conv +
ReLu

Max
Pool

64 3x3
Conv +
ReLu

Max
Pool

128 3x3
Conv +
ReLu

Max
Pool

Dense,
64 units

Dropout,
0.5 p

Input, RGB +
normals

estimation:
HxWx6

Figure 4.4: Architecture of our light estimation network.

Section 4.2.1.

4.2.3 Physical Illumination model

In this section, we describe the illumination model employed in our architecture

with the aim of training our normals estimation network in a self-supervised manner,

i.e., without a ground truth of surface normal maps (see Section 4.4.1).

The model is described by the following equation:

Ib(i, j) = R(N(i, j) · L) + A, (4.6)

where:

• Ib(i, j) is the radiance at pixel (i, j),

• N(i, j) is the 3D surface normal evaluated at pixel (i, j),

• L is the 3D light vector, supposed constant across the image,

• A represents the ambient light contribution.

The Eq. (4.6) is a simplified version of Phong’s empiric illumination model [111].

In fact, here we only consider diffuse light (described by the N(i, j) ·L term), ignoring

100

the specular contributions. In addition, we are working under the assumption of a

single light source. Also, we further simplify the model by supposing R to be constant

for each material in the scene. As a consequence, the only learnable parameters of this

model are R and A.

4.3 Dataset generation methods

One of the most widely cited benchmark datasets for evaluating methods for

image intrinsic decomposition and, more specifically, light estimation is SUN360 [147].

Currently, this dataset is not available due to IP issues.

Moreover, because it is quite difficult to build high-quality datasets with the

correctly annotated light information, most of the existing and available ones are syn-

thetic, and often they don’t have complete ground truth data (e.g., VIDIT only has

light direction expressed in the form of cardinal points).

For these reasons, we built two new datasets and the corresponding precise

ground truth light information. The algorithms we developed to generate them allow

for reproducing the exact same data used in this work. The algorithms are released

as open source so that it will be possible for other researchers to either generate new

annotated datasets or reproduce those used in this work.

4.3.1 Synthetic Dataset

In this section, we describe our synthetic dataset, SynthOut, and the algorithm

we designed to generate it. This dataset contains a total of 20k RGB CG-rendered

images with the corresponding ground truth lighting information.

First, we used the Unity 3D Engine to create a simple outdoor scene composed of

realistic objects, such as pans, sofas, f1 cars, chess pieces, glasses, cups, etc. These ob-

jects were placed at random locations, with random orientations on a textured tarmac

surface. The sky was created with a high-resolution texture (a sunny sky containing

some sparse clouds).

101

Global ref.

x

z
y

x
z

y x

z

y

L
Camera ref.

Sun

Sun cycle

Camera path

Figure 4.5: Approach used to create our synthetic dataset, SynthOut : both the camera
and the sun are moved across a fixed path. L is the direction of the sun expressed in
the camera reference frame.

The 3D scene involves a great variety of shading and reflectance properties, as

the objects are composed of different materials, such as metal, wood, and glass, with

different opaqueness levels. Some of the objects have transparent shading, as well as

specular surfaces.

The only light source present in the scene is the sun, which is modeled as a

directional light, assumed to be infinitely far away.

Then, leveraging the C# scripting API available in Unity we created a software

application to automatically generate a dataset of rendered images from the 3D scene.

Its main components are the following:

• A light controlling module, which is responsible to move the sun across the sky

dome, with the purpose of simulating light conditions at different hours in the

day. Different RGB colors are randomly chosen for the light as well, with the

aim of creating a greater variety of lighting conditions.

102

• A camera controller module, which is responsible to change the camera position

and orientation, by following a “path” that runs across the scene. In this way, we

further augment (i) the range of relative orientations between light and camera

and (ii) the variety of combinations of objects present in each captured picture.

With this approach, we obtained multiple rendered images of the same objects

viewed from different angles and lit with different light conditions (direction and

color).

• A script which renders the images viewed from the camera at fixed time intervals.

The corresponding illumination conditions are also computed. In particular, the

relative orientation of the light with respect to the camera L = [Lx, Ly, Lz]
T

and the color of the light Lcol = [LR, LG, LB, Lα] are saved. When an image

is rendered, the corresponding segmentation map is also generated, assigning to

each object a spatial mask with a different label. In this way, the generated

dataset can be used for segmentation and object recognition tasks as well.

• By using a seed, we are able to control a set of pseudo-random parameters,

ensuring that each run of our algorithm on the same 3D scene gives as output

the same set of rendered images.

In order to generate images with enough different lighting conditions, we de-

signed the sun cycle not to be synchronized with the time needed for the camera to

travel across the fixed path through the scene. In this way, the software could iterate

through multiple runs on the path and obtain images of the same objects lit with dif-

ferent lighting conditions. An overview of the dataset generation approach is shown

in Fig. 4.5, while an example of the same scene under different lighting conditions is

shown in Fig. 4.6.

All the images are rendered at a (1080 x 1920) pixels resolution.

103

(a) (b)

Figure 4.6: Two sample images extracted from our SynthOut dataset, depicting the
same scene under different light conditions (direction and color).

4.3.2 Real dataset

In this section, we describe the algorithm we designed to automatically generate

a dataset of 40k real outdoor images along with the corresponding ground truth light

directions. We named this dataset RealOut.

Our algorithm is inspired by the work of the authors in [59]. In fact, they

also extracted limited FOV images from their Laval HDR Outdoor database, with-

out releasing the produced dataset, nor providing details about how the images were

generated.

Note that we do not release RealOut, as it is derived (through our algorithm)

from the Laval HDR Outdoor database. Nevertheless, the researchers who want to use

our dataset can re-create it by requesting the input data from the authors in [59] and

running our code.

4.3.2.1 Input panoramas

The Laval HDR Outdoor database [59] contains 205 HDR outdoor panoramas

in the latitude-longitude format, with a horizontal view of 360 degrees and a vertical

one of 180 degrees, with a resolution of (3884 x 7768) pixels. The dataset involves

a wide variety of environments, including parks, forests, buildings, roads, and cars.

Several light and sky conditions, from sunny to cloudy are present as well.

104

4.3.2.2 Sun position estimation

Since no metadata regarding the sun position is available in the Laval Outdoor

database, we designed an algorithm (Algorithm 1) to estimate it as accurately as possi-

ble from an input panorama I. The idea is to find the brightest connected component

in the panorama and identify the sun’s position as the centroid of this area.

Algorithm 1 Sun position estimation in panorama
Input: HDR panorama I
Output: Sun position(xsun, ysun)

▷ We work with Luminance channel in YCbCr space
1: Y,Cb, Cr ← RGB to YCbCr(I)
2: M ←max(Y)
3: Y ′ ← exp(Y

M∗10) ▷ Augment contrast on light channel

▷ Threshold image to obtain brightest regions
4: Th← find percentile(Y ′, 0.999)
5: YB ← bin thresholding(Y ′, Th)

6: map, stats← connected components(YB)
7: id max← find max area comp(stats)
8: white pixels← where(map == id max)

▷ Compute weighted centroid
9: xc ← 0

10: yc ← 0
11: sum← 0
12: for each (i, j) ∈ white pixels do
13: w ← Y (i, j)
14: sum← sum + w
15: xc ← xc + w ∗ j
16: yc ← yc + w ∗ i
17: end for
18: xsun ← xc/sum
19: ysun ← yc/sum

We found that only in 4 cases out of 205 the estimated sun positions were not

correct (from a qualitative point of view). This was due to buildings/objects occluding

105

(a) (b)

(c) (d)

Figure 4.7: Sun position estimation examples. In cases c and d the position was
manually corrected.

the sun or because the sky was too cloudy. In these cases we manually corrected the

estimated position (see Fig. 4.7).

The position of the sun in the panorama is then converted into horizontal and

vertical angles (see Fig. 4.8), by using the following formulae:

θsun =

(
1− xsun

Wpan

)
2π (4.7)

φsun =

(
1

2
− ysun

Hpan

)
π, (4.8)

where (xsun, ysun) is the sun position, in pixels, estimated with Algorithm 1 and (Hpan

x Wpan) is the panorama resolution.

4.3.2.3 Limited FOV extraction from Panorama

We developed a ray-casting approach to render a limited FOV portion of a

panorama. In order to do that, we leveraged the pinhole camera model, as it is a

106

𝜃𝑠

𝑥

𝑧

𝑦

𝜑𝑠

𝑶

𝑳

Figure 4.8: Horizontal and vertical angles of sun direction.

standard model in CG. In particular, we modeled the panorama as a texture wrapped

around a sphere with a fixed radius ρ. The observer (i.e., the camera) is positioned

in the center of this sphere and its orientation is expressed by two angles: θc and

φc, representing the counter-clockwise rotation in the x, z plane, and the elevation,

respectively (as in Fig. 4.9).

With this assumption, a point (or a vector) Pc in the camera reference system

can be converted in global coordinates, P with the following equation:

P = Rθ,φPc, (4.9)

where Rθ,φ is a pure rotation matrix:

Rθ,φ =

cos(θ) sin(φ) sin(θ) − sin(θ) cos(φ) 0

0 cos(φ) sin(φ) 0

sin(θ) − sin(φ) cos(θ) cos(φ) cos(θ) 0

0 0 0 1

 (4.10)

107

𝜃𝑐
𝑥

𝑧

𝑦

𝑥𝑐

𝑧𝑐
𝑦𝑐

𝜑𝑐

𝑶

Figure 4.9: Camera and global reference system. the camera orientation is identified
by the two angles θ and φ.

Note that both Pc and P are expressed as homogeneous coordinates.

The image plane is centered on the z axis of the camera, at a distance of f from

the origin (focal length), and it has physical dimensions h by w. If we set the image

pixel size equal to H by W , then each pixel will have a physical size equal to µy = h
H

by µx = w
W

.

Each pixel (i, j) in the image plane needs to be assigned the correct source

color from the panorama wrapped on the sphere. In order to do that, we cast a ray r

from the camera origin O through the center of pixel (i, j) itself and we compute the

intersection between this ray and the sphere. The points where r intersects the image

plane and the sphere are Qc and Pc, respectively (see Fig. 4.10). Qc has the following

108

𝑥𝑐

𝑧𝑐

𝑦𝑐

f

ℎ

𝑤

𝜇𝑥

𝜇𝑦

𝑶

𝑷𝒄

𝑸𝒄

(𝑖, 𝑗)

𝑟
Image plane

Camera ref.

Panorama wrapped
around sphere

𝜌

Figure 4.10: Pinhole camera model and ray-tracing approach to rendering a portion of
the panorama on the image plane.

109

coordinates:

Qc =

µx(j + 1

2
)− w

2

h
2
− µy(i + 1

2
)

f

1

 , (4.11)

while r is described by the following equation:

r : Sc = O + t
Qc −O

||Qc −O||
, t > 0, (4.12)

where Sc denotes a generic point belonging to r and t is a positive real value.

The intersection point between r and the sphere can be found by setting t = ρ,

leading to:

Pc = O + ρ
Qc −O

||Qc −O||
. (4.13)

We then convert this point from camera to global coordinates through Eq. (4.9), ob-

taining:

P =

Px

Py

Pz

1

 = Rθ,φPc (4.14)

In order to obtain the corresponding pixel in the panorama, we need to retrieve the

horizontal and vertical angles:

θP = atan2(Pz, Px) (4.15)

φP = arcsin(
Py

ρ
). (4.16)

The pixel coordinates (u, v) in the panorama can then be computed as:

v = ⌊
(

1− θP
2π

)
Wpan⌋ mod Wpan (4.17)

u = ⌊
(

1

2
− φP

π

)
Hpan⌋ mod Hpan, (4.18)

where (Hpan,Wpan) is the panorama resolution.

110

Finally, by denoting as I the rendered image and Ipan the input panorama, we

can assign each pixel of I as:

I(i, j) = Ipan(u, v). (4.19)

This procedure is repeated by casting a ray through each pixel (i, j) of the image plane.

4.3.2.4 Implementation

In order to generate our RealOut dataset, our algorithm iterates through each

panorama from the Laval Outdoor Database and, for each one, it renders 200 images,

by randomly varying the camera orientation. As for our other dataset generation algo-

rithm, the pseudo-random parameters (such as the camera orientation) are controlled

by a seed. In this way, the reproducibility of the generated data is guaranteed.

For each image, we compute the ground truth light direction angles φs,c and θs,c

as:

φs,c =

φs − φc, if φs − φc ∈ [−π
2
, π
2
]

arcsin(sin(φs − φc)), otherwise

(4.20)

and

θs,c =

(θs − θc) mod (2π), if φs − φc ∈ [−π
2
, π
2
]

(θs + π − θc) mod (2π), otherwise

(4.21)

In order to speed up the dataset generation, we parallelized the ray casting pro-

cedure on GPU (with CUDA framework), by rendering each pixel (i, j) independently

on a separate computing unit. In this way, we were able to render each image in an

average time of 8 ms.

We also created an interactive version of our software to load panoramas, nav-

igate through them and render the viewed portion from the camera, along with the

corresponding ground truth light direction.

4.4 Experimental results

In this section, we present and analyze the performance of our Fusion light

estimation approach.

111

First, we dive into some details about the training strategy of our model. Then,

we discuss the performance obtained on four datasets: SynthOut, RealOut, VIDIT, and

SID2. Finally, we perform an ablation study, showing how our architecture performs

better, on all these four datasets with respect to the same model that doesn’t include

the surface normals prediction branch and the illumination model.

4.4.1 Network Training

We randomly split our RealOut dataset (Section 4.3.2) by a proportion of 70%,

10%, and 20% for training, validation, and testing, respectively.

We trained our model from scratch on the training subset for 200 epochs, with

Adam optimizer and an initial learning rate of 0.1, with a batch size of 24. The images

were resized to match the input resolution of our architecture, that is (144 x 256)

pixels.

We tested different combinations of the weights α and β of the two terms L1

and L2 of the loss function, but it turned out that there were no substantial differences

in performance. A possible explanation for the lack of impact of changing the weights

α and β on the performance of the model could be that the model is not very sensitive

to the precise values of these weights, as long as both L1 and L2 components are

included in the loss function. Another possibility is that RealOut is still not a diverse

or complex enough dataset to reveal the effects of different weight values for the loss

function. Consequently, we opted to set α = 0.5 and β = 0.5.

Note that, as no ground truth data about 3D normals is available in our datasets,

we couldn’t separately train our normals estimation network. Also, we performed

surface normals estimation tests with the pre-trained network proposed in [10] as a

fixed processing unit, but the predictions were not satisfactory from a qualitative point

of view. In fact, our tests showed that the pre-trained network is able to obtain

satisfactory predictions of normals in the case of indoor scenes (Fig. 4.11), but not in

the outdoor case (Fig. 4.12), which is the scenario of our interest. This is the reason

why we opted for a self-supervised approach that leverages the physical illumination

112

(a) Input image (b) Predicted normals map (c) Ground truth normals
map

Figure 4.11: 3D normals prediction obtained with the code in [10], which is an imple-
mentation of the model in [25], in the indoor case.

model (described in Section 4.2.3). The weights of our normals prediction network are,

in fact, indirectly learned by back-propagation of the L2 term of the loss (Eq. (4.4)),

which measures the error between the luminance map Y of the input image and the

one computed according to the simplified Phong’s model, Ŷ (Eq. (4.6)).

4.4.2 Notation and metrics

In order to evaluate the performance of our model, we measure the error between

the predicted light direction L̂ and the real one L as the angular distance between the

two directions, defined as:

α = arccos

(
L · L̂

||L|| ∗ ||L̂||

)
180

π
, ∈ [0, 180] (4.22)

Then, we compute the cumulative error distribution on all the images from the target

test set T as:

F (x) = |S|, S = {i ∈ T |αi ≤ x}, x ∈ {0, 1, .., 180}. (4.23)

In our evaluation we also consider the AUC metric relative to the cumulative error

curve:

AUC =
1

|T | · 180

∑
x

F (x), ∈ [0, 1], (4.24)

113

(a) Input image (b) Predicted normals map

Figure 4.12: 3D normals prediction obtained with the code in [10], for outdoor scenes.
Even if no ground truth normals map is available for validation, it can be seen that
the result is not qualitatively satisfactory.

4.4.3 Results on RealOut

As can be seen in Fig. 4.13, our model achieves really good performance on the

test subset of our RealOut dataset, with an AUC score of 0.976. The average angular

error is 4.19 and the standard deviation is 4.17 (both values expressed in degrees).

We observe that, in [59], the authors tested their approach on a limited FOV

dataset derived from Laval HDR Outdoor, in a similar way to what we did, obtain-

ing the cumulative error distribution curve shown in Fig.5 (b) of their paper. Un-

fortunately, they have not released the aforementioned limited FOV dataset nor an

in-depth description of the method used to generate it. For this reason, we don’t know

its characteristics, such as image resolution, vertical/horizontal FOV, anti-aliasing fil-

tering, statistical distribution of camera orientations, etc. Nevertheless, assuming their

dataset to be “similar” to ours, we could state that our method performs better, as our

cumulative error curve leans more towards the ideal one. Note also that the code of

their approach is not available and as such, we cannot test their method on our dataset

for a direct comparison.

114

0 25 50 75 100 125 150 175
0

500

1000

1500

2000

2500

3000

3500

4000

Cumulative angular error - norm. AUC: 0.976
random guess - norm. AUC: 0.5

Figure 4.13: Cumulative angular error distribution on our RealOut dataset.

4.4.4 Results on SynthOut

We also evaluated our method on our CG-generated dataset, SynthOut, mainly

to assess its capability to generalize on different kinds of images.

First, we tested our model directly on this dataset without any transfer learning.

In this case, we only obtained an AUC score of 0.389, which is under the random guess

of 0.5 (corresponding to a uniform error distribution). This is somewhat expected, as

our model was trained from scratch on RealOut dataset, which is profoundly different

from SynthOut, both for the nature of the involved images (real vs. CG rendered) and

the semantic content.

Nevertheless, we show that, even with a few epochs of transfer learning and fine-

tuning, our model manages to learn the features of this dataset very well. In particular,

we adopted the following strategy:

1. initialize the network with the weights trained on RealOut ;

115

2. freeze all layers except the Dense ones in the light network branch (shown in

Fig. 4.4). In this way, only 8453 weights remain trainable;

3. train for 20 epochs (transfer learning step);

4. unfreeze all weights;

5. train for 10 (or 50) epochs, with Adam optimizer and small starting learning rate

(10−3) (Fine-tuning step).

With only 10 epochs of fine-tuning, our model achieves an AUC score of 0.890, while

this score increases to 0.926 after 50 epochs.

4.4.5 Results on other CG datasets

We also evaluated our model on two other CG datasets: VIDIT and SID2 (see

Section 4.1.3).

Note that, in the case of VIDIT, the ground truth direction of light is available

only for the training subset, and it is in the form of one of eight possible cardinal

directions for the horizontal angle, θ. On the other hand, the vertical angle, ϕ, is not

specified, but it is constant in each image. Hence, in order to be able to do our tests,

we proceeded as follows: first, we divided the training subset into two parts with a

proportion of 70% and 30%. The first one was used for training and the second one

for testing. Then, we set ϕ = π
4

in our ground truth, for each image, as it seemed a

reasonable value upon visual inspection.

In a similar way to what we did for SynthOut, we tested three levels of transfer

learning and fine-tuning, i.e.: (i) no fine-tuning nor transfer learning, (ii) transfer

learning (20 epochs) + 10 epochs of fine-tuning (FT-10) and (iii) transfer learning +

50 epochs of fine-tuning (FT-50). The obtained AUC scores for these two datasets and

on SynthOut are summarized in Table 4.1,

From the table, it can be seen that, similarly to the case of SynthOut, without

fine-tuning the performance obtained is not satisfactory, with just an AUC of 0.658 for

116

Table 4.1: AUC scores of our approach on four datasets against different fine-tuning
levels: (i) no transfer learning/fine-tuning, (ii) transfer learning + 10 epochs of fine-
tuning (FT-10), (iii) transfer learning + 50 epochs of fine-tuning (FT-50).

SynthOut VIDIT SID2

None 0.389 0.658 0.639

FT-10 0.890 0.887 0.862

FT-50 0.926 0.944 0.917

Table 4.2: Angular error (in degrees) of our model on different datasets. On SynthOut,
VIDIT, and SID2 the reported performance is obtained with the 50 epochs fine-tuned
model (FT-50).

SynthOut VIDIT SID2 RealOut

Mean 13.80 8.79 15.46 4.90

Std. Dev. 10.96 10.52 14.92 4.17

VIDIT and 0.639 for SID2. Nevertheless, we can observe that, even with a few epochs

of transfer learning and fine-tuning our model is able to achieve good predictions on

these datasets, which we recall, are CG generated and, as such, are very different from

RealOut, which was used to train our model.

In Table 4.2 we report the mean angular error and standard deviation, obtained

in the FT-50 case on the three CG datasets, compared to the ones obtained on RealOut.

Finally, we compare our approach with the one proposed in [131], which achieved

a mean angular error of 14.22 degrees on SID2. The result obtained by our fine-tuned

model is 15.46 (Table 4.2), which is slightly worse. However, by training our model

from scratch on SID2, as the authors in [131] did, our approach is able to outperform

theirs, achieving an average angular error of 12.92 degrees.

4.4.6 Ablation Study

In this section, we discuss the analysis we did to verify that our Fusion archi-

tecture performs better than a simplified one that does not exploit the information

117

given by the prediction of surface normals. We will show that including a dedicated

branch for indirectly learning the task of surface normals estimation allows for better

light prediction results.

We compare the prediction performance of the following two models:

1. our complete architecture, Fusion (Fig. 4.1).

2. A deep neural network with the same architecture described in Section 4.2.2 (and

shown in Fig. 4.4), but modified in order to take as input only an RGB image

(without concatenation with the normals prediction map). We refer to this model

as Light Only.

We tested both models on the four datasets: SynthOut, VIDIT, SID2 and Real-

Out. In order to have a fair comparison, we adopted, for both Light Only and Fusion,

the same hyper-parameters and training scheme of the FT-50 case.

The cumulative prediction error curves obtained are shown in Fig. 4.14: while

in the case of SynthOut Fusion only slightly outperforms Light Only, with an AUC

score of 0.926 against 0.893, on VIDIT the performance difference increases, with AUC

scores of 0.954 and 0.871 for Fusion and Light Only, respectively. This is true also for

SID2, for which the AUC obtained are 0.878 for Light Only and 0.917 for Fusion. In the

case of RealOut dataset, the performance gap between the two architectures increases,

with an AUC of 0.976 of Fusion against 0.886 of Light Only. The same conclusions can

also be drawn by analyzing the values of the mean angular errors obtained (shown in

Table 4.3): on all four datasets the Fusion architecture achieves a significantly lower

mean error.

These results can be interpreted as follows: in the case of SynthOut, although

the objects in the images are realistic, the layout and in general, the complexity of the

scene is still limited in comparison with real outdoor photos. As a result, even Light

Only model, which does not use information about surface normals, is able to learn the

features needed to determine the direction of light. This is no longer true in the case

of more complex and realistic outdoor scenes, such as those contained in VIDIT, SID2,

118

Table 4.3: Comparison of mean angular error (in degrees) of Fusion and Light Only
models on four reference datasets. For SynthOut, VIDIT and SID2 the reported results
are obtained with both Fusion and Light Only models fine-tuned with the FT-50
strategy.

SynthOut VIDIT SID2 RealOut

Fusion 13.80 8.79 15.46 4.90

Light Only 19.77 23.75 22.42 21.07

and even more the ones from the RealOut dataset. In these cases, Fusion, through

the additional information on surface normals, is able to achieve considerably better

prediction accuracy, confirming our intuition.

4.5 Discussion

In this chapter, we presented a novel deep-learning approach for the prediction

of 3D light direction, from outdoor images, in a single light source scenario. The key

aspect of our method is the joint use of a data-driven strategy with a physics-inspired

model to exploit additional geometric information, i.e., 3D surface normals, in order to

achieve better prediction accuracy. The idea we leveraged is that geometric information

about the depicted scene can aid the task of light source direction prediction, as it allows

the model to disambiguate cases where different light directions may give rise to the

same reflections/shading on objects.

Since we couldn’t find any pre-trained network for outdoor 3D surface normal

estimation, neither we had a dedicated ground truth with surface normal maps, we

adopted the following self-supervised training strategy (see Fig. 4.1): we input the

current surface normals and light direction predictions to a simplified version of the

Phong’s model (Eq. (4.6)). Then, we compare the model’s output with the luminance

channel of the input image, through a reconstruction term (Eq. (4.4)) embedded in the

loss function. In this way, our network indirectly learns to predict the surface normals

(or at least an approximation of them) without the need for the associated ground

119

0 25 50 75 100 125 150 175
0

500

1000

1500

2000

2500

Light only model - norm. AUC: 0.871
Fusion model - norm. AUC: 0.954
random guess - norm. AUC: 0.5

(a) Comparison on VIDIT

0 25 50 75 100 125 150 175
0

100

200

300

400

500

600

700

800

Light only model - norm. AUC: 0.893
Fusion model - norm. AUC: 0.926
random guess - norm. AUC: 0.5

(b) Comparison on SynthOut

0 25 50 75 100 125 150 175
0

2500

5000

7500

10000

12500

15000

17500

20000

Light only model - norm. AUC: 0.878
Fusion model - norm. AUC: 0.917
random guess - norm. AUC: 0.5

(c) Comparison on SID2

0 25 50 75 100 125 150 175
0

500

1000

1500

2000

2500

3000

3500

4000

Light only model - norm. AUC: 0.886
Fusion model - norm. AUC: 0.976
random guess - norm. AUC: 0.5

(d) Comparison on RealOut

Figure 4.14: Comparison between Fusion and Light Only architectures on 4 datasets.
On SynthOut the two models achieve similar performance, while on all the other
datasets Fusion achieve significantly better AUC scores, showing how the inclusion
of the surface normal estimation branch helps to improve the light estimation perfor-
mance. Note: for SynthOut, VIDIT and SID2 we compare both models fine-tuned with
the FT-50 strategy.

120

truth data. Also, both the task of surface normals and light direction estimation are

learned simultaneously and in a synergistic manner, as one helps improve the other.

We observed how the datasets available in the literature are either too small,

not realistic, or simply don’t contain (reliable) ground truth light information. Also,

SUN360, which is one of the most widely used datasets for the evaluation of light source

estimation methods, is not available anymore, due to IP issues. For this reasons, in

order to train and evaluate our deep light estimation model, we developed two algo-

rithms (available as open-source code), that allow for the creation of both synthetic

and real image datasets. With these algorithms, we built two datasets, namely: Syn-

thOut and RealOut. SynthOut is composed of 20k images, containing realistic objects,

such as cups, plates, sofas, chairs, musical instruments, etc.. which are placed in an

outdoor scene with a tarmac textured floor and a sunny sky. A high number of dif-

ferent light directions and colors is present in the dataset. RealOut contains 40k real,

limited FOV outdoor images extracted from the 360 degree panoramas contained in

the Laval Outdoor HDR database. This dataset involves a great number of outdoor

scenes, with buildings, trees, cars, and streets, lit with different sky conditions, rang-

ing from sunny to cloudy. We believe that our data generation algorithms constitute

a valuable contribution that can be used to tackle the problem of data scarcity in this

field. In fact, they can be used to automatize the process of building light estimation

datasets starting from either CG scenes or 360 degree panoramas.

RealOut was used as a base dataset to train from scratch and validate her pro-

posed architecture. We tested the generalization capability of our method, by making

predictions also on SynthOut, VIDIT, and SID2 datasets, by adopting and comparing

different transfer learning and fine-tuning strategies. We showed that even with a few

epochs of fine-tuning our model achieves satisfactory performance on all these datasets.

We also showed that our architecture, if trained from scratch, is able to outperform

the method proposed in [131], in terms of mean angular error on the SID2 dataset.

Finally, in order to evaluate the contribution of surface normals estimation in the

light direction prediction task, we performed an ablation study, in which we compared

121

the performance of our complete architecture (Fusion) and a simplified one (Light only)

that does not incorporate the normal estimation branch and the illumination model.

When evaluated on SynthOut VIDIT, SID2, and especially on RealOut, the Fusion

model achieved significantly better AUC scores and angular errors than the Light Only

version. These results confirmed that, for real, complex, outdoor images, the surface

normals information helps to achieve better light direction predictions.

122

Chapter 5

LIGHT-BASED FORGERY DETECTION

In this chapter, we describe two forgery detection methods based on the iden-

tification of inconsistencies in the illumination field of the image under examination.

Indeed, under appropriate assumptions, one of the clues that may indicate the presence

of photomontage (e.g., splicing attacks) is an inconsistent illumination between various

parts of the image under examination.

Consider, for example, the image in Fig. 5.1: at a close look, it can be seen

that the direction of the light of the two people involved in the scene is not consistent.

This is evident, for example, by focusing on the shadows of the face and clothes. As

mentioned earlier, this kind of analysis is thinkable only under certain assumptions.

If the input image has “simple” illumination, for example, due only to sunlight in the

outdoor environment then we are in the condition of directional light. This means that

the light source can be considered infinitely far from the scene, i.e., can be completely

described by a vector in 3D space. In such a situation it is reasonable to assume this

Figure 5.1: Splicing example. The light direction is not consistent between the two
people in the image.

123

Figure 5.2: An example of an indoor scene with multiple light sources creating a
complex lighting field.

constant direction within the whole image. Consequently, if the objects/patches used

to perform the photomontage (e.g., splicing) are derived from images with sufficiently

different light directions, this method can identify the forgery.

Let us consider an indoor scene with multiple lighting sources inside a room

(Fig. 5.2). In this case, the illumination varies greatly within the image itself and it is

clear that in such a situation this type of analysis is not applicable. It is important to

emphasize that this method is not to be considered the ultimate solution with regard

to forgery detection. However, in certain situations, it could be used in conjunction

with other, more general methods.

Consider, in fact, that an attacker will typically try to make it more difficult

to identify the photomontage created, through counter-forensic measures, for example

by applying Gaussian-smoothing to smooth the edges of the spliced/copy-moved area,

or by adding noise to make a synthetic fake image more realistic. It should also be

considered that ad-hoc methods can be developed with the aim of limiting/eliminating

artifacts generated by a photomontage, which could be detected by forgery detection

methods published in the past. In this sense, the use of the light field as a discriminant

in a forgery detection method makes it at least complicated to apply counter-forensic

measures. In fact, even with professional software, it is difficult to modify the lighting

124

Global Network

Local networkMask R-CNN

em
b

ed
d

in
g

Fully connected
network

Forged
/

pristine

𝐿𝑔𝑙𝑜𝑏

𝐿1, . . , 𝐿𝑁

Ԧ𝑥

Figure 5.3: Architecture of proposed light-based forgery detection method.

of an object to make it consistent with the other objects/patches present in the image.

The chapter is organized as follows: Section 5.1 presents the architecture of our

first light-based splicing detection method, while Section 5.2 presents the experimen-

tal results. Section 5.3.2 describes a second light-based splicing detection approach

and Section 5.4 presents the experimental results of the second approach. Finally, in

Section 5.5 the obtained results are discussed and some conclusions are drawn.

5.1 Method architecture

In this section, we describe our light inconsistency-based forgery detection method,

which we denote as light1, for clarity. The whole architecture is described schematically

in Fig. 5.3.

First, a network is used to perform instance segmentation on the input image.

Instance segmentation consists of performing a segmentation that assigns different

labels to different instances of an object of the same class. This is in contrast to

semantic segmentation, where a single label is typically assigned to all objects of the

same class. The architecture we have chosen is the “MaskR-CNN”, proposed in [56].

125

This model is an extension of the popular Faster R-CNN network [121] for object

detection, which adds an additional branch to the network to predict a binary mask

for each object in the image.

The Mask R-CNN model is composed of a base network, a Region Proposal

Network (RPN), and a head network. The backbone network is typically a pre-trained

Convolutional Neural Network (CNN) such as ResNet or VGG, which is responsible for

extracting features from the input image. The RPN is a fully convolutional network

that takes the features from the backbone as input and generates a set of proposal

boxes, which are regions of the image that may contain objects.

The head network takes the features from the backbone network and the pro-

posal boxes from the RPN as input and performs three tasks: object classification,

bounding box regression, and mask prediction. The object classification task involves

predicting the class of the object (e.g., person, car, chair) for each proposal box. The

bounding box regression task involves refining the proposal boxes to enclose the objects

in a more accurate way. The mask prediction task involves predicting a binary mask

for each object, which outlines the object’s shape in the image. We chose this model as

it was shown to achieve state-of-the-art results on several benchmarks, such as COCO

dataset [90].

The architecture proposed in Chapter 4 is then used to predict the 3D direction

of the light, both on the whole image and on the segmented patches (the “global

network” and “local network” blocks in Fig. 5.3). In this way, both local and global light

information is available and can be combined to obtain a feature vector x (embedding

step), which is in turn fed as input to a binary classifier to label the image as forged

or pristine. The idea is that x should carry information about eventual inconsistencies

in the light field of the image.

It should be noted that the number of patches that are extracted through the

segmentation is not known a priori. If we created x simply as a concatenation of the

light predictions its dimension would vary image by image. As a consequence, the

classifier should allow for non-fixed size inputs, such as a Recurrent neural network

126

(RNN) or, more specifically, a Long short-term memory model (LSTM). These archi-

tectures, in fact, include the concept of memory/state and are capable of correlating

information at different “times” in the input sequence. This is useful when the input

signals are audio, video, temporal series, and text. In our case, however, it is not

appropriate to identify a sequential relationship between our input data, i.e., the local

light predictions L̂i. Rather, we could say that there is a spatial relationship between

them, assuming that the prediction L̂i is valid in all pixels belonging to patch i.

To obtain a fixed-size feature vector x we opted for the following embedding

strategy. First, we convert each local light prediction into polar coordinates, θi =

180 + 180
π
atan2(L̂z, L̂x) and φi = 90 + 180

π
arcsin(L̂y

||L̂||) and analogously for the global

prediction, obtaining θglob and φglob. Then, we compute the frequency histograms of

the local prediction angles θ and φ as follows. Let

Si = {θj | θj ∈ [iα, (i + 1)α[, j = 1, .., N}, i = 0, 1, .., k (5.1)

be the set of θ angles that fall in the i-th bin of the frequency histogram, where N is

the number of extracted patches, and α = 10. As θ ranges in the interval [0, 360[, k is

fixed to 36. Analogously, we define:

Ti = {φj | φj ∈ [iβ, (i + 1)β[, j = 1, .., N}, i = 0, 1, .., k (5.2)

as the set of φ angles that fall in the i-th bin of the histogram. In order to obtain

the same number of bins as for θ, we set β = α
2

= 5. The histograms for θ and φ are

computed, respectively, as:

hθ
i = |Si|, i = 0, 1, .., k (5.3)

and

hφ
i = |Ti|, i = 0, 1, .., k (5.4)

127

𝑥 ∈ ℝ2×37 flatten

Dense,
2000

neurons

Dense,
5000

neurons

Dense,
5000

neurons

Figure 5.4: Binary classifier used in our proposed approach, that takes as input the
feature vector x, which is an embedding of the local and global light predictions.

Finally, we construct the feature vector, x ∈ R2×(k+1) as:

x1,i = hθ
i , i = 1, .., k,

x1,k+1 = θglob

x2,i = hφ
i , i = 1, .., k,

x2,k+1 = φglob

(5.5)

Note that we chose α = 10 as it is compatible with the deviation standard (∼ 5 degrees)

of the prediction angular error of our light-estimation network.

A fully connected neural network was used as a classifier. This network was

trained on a dataset composed of couples of feature vectors x extracted with the

already-trained local and global light prediction networks and corresponding binary

labels (forged/pristine). The architecture is shown in Fig. 5.4

128

(a) Spliced image (b) Objects mask (c) Splicing ground truth
mask

Figure 5.5: An example spliced image and the corresponding masks from our synthetic
splicing dataset.

5.2 Experiments

This section describes the experimental setup we used to validate our method

and the results obtained on two datasets. First, we will describe these datasets, then

we will give an overview of the training strategy and the hyper-parameters used to

train our models. Finally, we will present the results obtained on both datasets.

5.2.1 Synthetic splicing dataset

As a first experiment, we tested the proposed architecture on a synthetic splicing

dataset, derived from our SynthOut dataset (described in detail in Chapter 4). Syn-

thOut is a dataset of images rendered with Unity starting from an outdoor 3D scene

containing realistic objects, such as chairs, balls, cups, sofas, etc. The rendered images

are lit with a great variety of lighting conditions, obtained by simulating the movement

of the sun during the day and by changing the color of the light. Each spliced image

was obtained by cutting an object from an image and inserting it into another one.

Being the object segmentation masks available as additional meta-data in SynthOut,

we have been able to automate the segmentation process with the certainty of correctly

extracting the objects. We only selected objects that were entirely contained in the

image. Also, we made sure that the copied objects were not occluding other objects in

the target image. An example of a spliced image, along with the corresponding ground

truth mask is shown in Fig. 5.5.

The resulting dataset contains a total of 7566 images, of which 3783 are spliced,

129

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curve AUC 0.701

Figure 5.6: ROC curve and corresponding AUC obtained on synthetic splicing dataset.

with a resolution of (1080 × 1920) pixels. From now on, we will refer to this dataset

as “synthetic splicing dataset”.

As mentioned, we used the same deep-learning architecture for local and global

light predictions. However, we trained one instance of it on SynthOut for the global

light direction prediction task and a second instance on a dataset of patches extracted

from SynthOut for the local light direction prediction.

We then computed the x feature vectors (as in Eq. (5.5)) starting from the local

and global predictions obtained with the previously discussed networks and stored them

along with the ground truth binary labels. This newly constructed dataset was then

used to train and test the classifier network. In order to assess the splicing detection

performance of our approach, we measured the F1-score and the ROC curve on a

portion of the dataset (20%), used as a test set. We obtained an accuracy of 0.655,

and an F1-score of 0.627, while the ROC curve, shown in Fig. 5.6 has a corresponding

area under the curve (AUC) of 0.701. In Fig. 5.7 the confusion matrix is shown. As

can be seen from these results, there is still room for improvement.

As the splicing dataset was derived from SynthOut, we have available, as ground

130

0 1
Predicted

0
1

Ac
tu

al

487 129

330 386

150

200

250

300

350

400

450

confusion matrix

Figure 5.7: Confusion matrix on sythetic splicing dataset.

truth information, not only the binary label on each image but also the 3D light

directions of the patches extracted and pasted to create the spliced images. Thanks

to this, we were able to carry out an in-depth analysis to understand what caused the

classification errors. We recall that, in this experiment, the objects are always correctly

segmented, as we are leveraging the object masks directly generated with Unity during

the creation of SynthOut. Therefore, the classification errors can be due only to two

factors: (i) the light predictions are not accurate, or (ii) the chosen light prediction

embedding, i.e., the feature vectors x, don’t carry enough information to be useful

for the binary classifier. In order to exclude the second hypothesis, we performed the

following test: we constructed an “ideal” dataset of feature vectors x and corresponding

binary labels by using the ground truth of local and global light directions, instead of

the model’s predictions. We then split this dataset into train and test sets and trained

and tested the classifier on these two subsets, respectively. In this case, we obtained

an accuracy of 0.960 and an F1-score of 0.964, while the AUC is of 0.965, (the ROC

curve is shown in Fig. 5.8). These results allow us to rule out hypothesis (i) as the

main cause of classification errors. Indeed, this result demonstrates that, if the light

predictions were ideal, the chosen feature vectors x can effectively be used to train the

binary classifier.

131

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curve AUC 0.965

Figure 5.8: ROC curve and AUC obtained on synthetic splicing dataset by using the
ground truth 3D light directions instead of the predicted one.

Therefore, we focused our attention on the performance of light direction pre-

diction i.e., hypothesis (i), this being the upstream cause of classification errors. In

Fig. 5.9 the cumulative frequency curve, F (E) of the angular errors between the local

ground truth light directions and the predicted ones are shown (we used a bin size of

1 degree). In the figure, the percentiles eα at different α levels (80%, 90%, 95%, 99%)

are highlighted. They have been determined as eα : P(E ≤ eα) = F (E = eα) = α%.

For example, the 80-th percentile is e80 = 12.0 degrees, while the 99-th percentile is

e99 = 51 degrees. This means that, by setting 51 degrees as the maximum angular

error acceptable, we have a probability of 0.99 that the prediction error will be lower

than this threshold, while this probability drops to 0.80 if we admit a smaller error of

12 degrees. From the inverse perspective, if we fix a confidence level, e.g., 80%, we

have to expect angular errors up to 12 degrees in ∼ 80% of the cases while, if we want

a confidence level of 99%, we need to expect errors up to 51 degrees in 99% of the

cases. For simplicity, we refer to these percentiles as “angular confidence thresholds”.

We now analyze how the angular confidence thresholds relate to the distribution

132

0.99
0.95
0.90

0.80

51.024.0

18.0

12.0

Figure 5.9: Cumulative angular error distribution of light predictions on patches. On
the plot, we highlighted four different percentiles, corresponding to the levels 80%,
90%, 95%, and 99%.

of light direction differences in the spliced images in our dataset. In particular, we ask

ourselves the following question: given an angular error threshold, e.g., 12 degrees,

what is the percentage of spliced images in the dataset having an angular difference

between the global light direction vector and the ones in the spliced regions that is

below 12? Intuitively, if this percentage is high, we cannot expect good detection

results, because for all these images the light prediction obtained from our network is

not reliable.

In Fig. 5.10 the cumulative frequency curve of angles between light directions

in the spliced images of the dataset is shown (we used a quantization step of 1 degree).

The plot also shows the percentage of spliced images for which the light direction angle

difference between the spliced objects and the target image is lower than the angular

confidence thresholds. For example, if we consider the angular threshold of 12 degrees

(corresponding to a confidence level of 80%), we see that 13.81% of spliced images

will have light differences lower than this value. This means that for this percentage

133

51.0 -> 99%24.018.0

12.0
-> 80%

0.61

0.24

0.216

0.138

Figure 5.10: Cumulative frequency curve of angular differences between light directions
in spliced images. Different percentiles eα of light direction prediction errors (the α
level is highlighted in yellow) are also marked on the plot.

of images the prediction given by the network is not reliable to create meaningful

feature vectors. If we wanted a confidence level of 99%, we should consider an angular

threshold of 51 degrees; in this case, 61% of spliced images in the dataset will have

light differences that are lower than this value.

We, therefore, performed a new experiment in which we recreated the splicing

dataset by adding the constraint that each spliced image contained objects from images

with a light direction difference greater than 50 degrees. We refer to this dataset as

“98%-confidence splicing dataset”, because it contains only spliced images with angular

differences between angular vectors that are greater than the threshold needed to have

a 98% confidence of light prediction. In this case, the performance was better, with

an accuracy of 0.774, an F1-score of 0.785, and an AUC of 0.828. The ROC curve is

shown in Fig. 5.11, while two examples of predictions are shown in Fig. 5.12. Here, the

bounding boxes of the objects on which the local predictions have been computed are

drawn in red, while the predicted light direction and the ground truth ones are marked

134

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curve AUC 0.828

Figure 5.11: ROC curve and AUC obtained on the 98%-confidence splicing dataset.

as green and yellow arrows, respectively. The object for which the predicted light was

furthest from the global light prediction is highlighted in cyan. In this way, we are able

to obtain an approximate localization of the spliced area.

5.2.2 Evaluation on benchmark datasets

In order to assess the applicability of the proposed method in a realistic scenario,

involving real images with complex forgeries, we evaluated it on the benchmark CASIA

v2.0 dataset [38]. This dataset consists of 12624 images with resolutions ranging from

320× 240 to 800× 600, in various formats (jpg, BMP, tif). Of these, 7491 images are

original and 5123 are forged. Because the tampering attacks involved are both copy-

move and splicing, we filtered out the copy-moved images, as our method is tailored to

splicing detection. Note that the ground truth is given as a binary label at the image

level (pristine vs. forged). Hence, in contrast to the synthetic dataset case, we don’t

have any object segmentation mask.

Therefore, the Mask R-CNN model (see Fig. 5.3) was used to segment the

objects in the images and extract the corresponding patches on which the local light

135

(a) (b)

Figure 5.12: Two examples of splicing detection on the 98%-confidence splicing dataset.
The bounding boxes of the objects on which the local light predictions were computed
are shown in red. The predicted and ground truth light directions are marked as
green and yellow arrows, respectively. The object with the greatest difference in light
directions from the global one is marked as the spliced one (cyan). The green text
indicates the angular difference between the light directions of the two images involved
in the splicing.

0 1
Predicted

0
1

Ac
tu

al

477 137

162 547

150

200

250

300

350

400

450

500

confusion matrix

Figure 5.13: Confusion matrix obtained on 98%-confidence splicing dataset.

136

0 1
Predicted

0
1

Ac
tu

al

1475 9

352 3

200

400

600

800

1000

1200

1400

confusion matrix

Figure 5.14: Confusion matrix obtained with proposed method on CASIA2 dataset.

predictions will be done.

For this experiment, we used the light prediction network’s weights pre-trained

on RealOut (see Section 4.3.2), as this dataset contains real images and as such, it

is more similar to CASIA2 than SynthOut. After extracting the patches with Mask

R-CNN and computing the local light predictions, the feature vectors were computed

by means of Eq. (5.5), in order to build the dataset to train the binary classifier.

In this test, the performance are not satisfactory. In fact, we obtain a good

accuracy of 0.804 but the precision is very low: 0.25. The discrepancy between accuracy

and precision is due to the imbalance in the number of spliced and original images

within the CASIA2 dataset. From the confusion matrix, shown in Fig. 5.14, it is easy

to see that the model is heavily biased towards predicting almost always a negative

label (pristine). The ROC curve, shown in Fig. 5.15, confirms the bad performance, as

it leans towards the random guess.

A possible reason for the poor performance is the fact that, because no infor-

mation about the involved light condition in the images is available in CASIA2, we

couldn’t train nor fine-tune our light prediction network on this dataset. As such, we

could only use the pre-trained light prediction network as if it were a fixed computing

unit. We also don’t know what is the distribution of the angular difference between

137

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curve AUC 0.531

Figure 5.15: ROC curve obtained on CASIA2 dataset.

light directions of the spliced patches, making it impossible to perform an analysis on

the level of uncertainty of light predictions. Note also that, the hypothesis of images in

an outdoor environment, with a single light source, is not guaranteed. As mentioned

at the beginning of this chapter this is crucial for the application of our method, as

it expects different objects in the same pristine image to be lit from the same light

direction.

We must also consider the fact that there is no certainty that the patches seg-

mented through the Mask R-CNN network actually contain the spliced regions. Mask

R-CNN has been trained to segment objects belonging to a priori known classes. How-

ever, many of the spliced images in CASIA2 involve irregularly shaped patches that

do not necessarily correspond to objects. This can be seen in Fig. 5.16, where the

bounding boxes of the segmented objects are shown in red. While we do not have the

ground truth map of the spliced regions available, it is possible even by eye to see how

often the segmented zones are not related to the spliced regions.

138

(a) (b)

(c) (d)

Figure 5.16: Examples of segmentation on CASIA2 spliced images. Even if a ground
truth map of the spliced region is not available, it can be seen that often the segmented
objects don’t relate to the spliced regions.

139

5.3 InverseRenderNet - based approach

In this section, we describe another splicing detection approach we designed,

which is based on light consistency estimation. For clarity, we refer to it as light2. We

leveraged the architecture proposed in [151], referred to as InverseRenderNet by the

authors, as a means to predict the light conditions, as well as other 3D information, in a

given image. InverseRenderNet is an Encoder-Decoder type deep learning architecture

that, given an input image, is able to obtain, as output, the 3D normals map, the

albedo diffusion map, and the 3D scene illumination described as a set of coefficients

in a spherical harmonic series expansion. This network effectively performs an “inverse”

rendering, as it decomposes a 2D image in a set of 3D orthogonal components. The

simplifying assumptions made by the authors are the following:

1. the illuminating light sources are distant. This means that the incoming radiance

(incident illumination) can be described as a function of the incident angle to each

object’s surface.

2. The scene is described by a local Lambertian diffuse model. This model neglects

effects such as cast shadows and inter-reflections.

3. Only a limited number of spherical harmonic basis functions is considered (9).

As a consequence, high frequencies components of lighting conditions are filtered

out. In many situations though, such as the outdoor setting, this is still sufficient

to approximate the illumination function very well.

One of the key aspects of InverseRenderNet is that it is self-supervised. This

means that there is no need to train the network on new data. In fact, the decoder in

the network consists of a differentiable forward rendering that, from the extracted 3D

components (normals, albedo, and light coefficients), reconstructs an approximation of

the input image. The optimal light coefficients are obtained by minimizing the error

between the reconstructed and input images.

140

𝐧

Ω

𝐱

𝜔𝑖

Figure 5.17: Geometry setup for radiance model.

5.3.1 Differentiable forward rendering

In order to understand our approach, we first need to introduce a few physical

quantities and mathematical tools (such as spherical harmonic expansion). Then, we

can then describe the forward rendering block used by the authors as a decoder in

their architecture. This is important as we will also use this block in our approach as

a separate unit.

Let us denote as Y = Y (x) the reflected radiance at a given point x in the scene.

Under the assumption of diffuse Lambertian materials, this quantity is a measure of

the intensity of reflected light (equally in all directions) at a certain wavelength. The

reflected radiance depends also on the incident illumination, usually referred to as in-

coming radiance, and the materials’ reflection properties, which are typically described

by a bi-directional reflectance distribution function (BRDF).

Let’s consider the geometric setup shown in Fig. 5.17. We have denoted as x a

generic point of an object’s surface. n is a unit vector representing the surface normal

at the point x, while ωi is a unit vector describing a generic direction of incoming light.

Ω is the upper hemisphere, centered at n, describing the set of all possible incoming

directions.

141

We can now express the local relationship between reflected radiance and in-

coming radiance with the following equation:

Y (x) =

∫
Ω

ρ(x, ωi)L(x, ωi) (ωi · n) dωi (5.6)

where:

• L(x, ωi) is the incoming light (irradiance) at point x from (negative) direction

ωi.

• ρ(x, ωi) is the BRDF function at point x. By using the assumption of Lambertian

surfaces, we can drop the dependency on the incoming direction: ρ(x, ωi)→ ρ(x).

Note that all the quantities are expressed in the local coordinate system with the

orientation expressed by n (as in Fig. 5.17).

With the assumption of distant lighting, we can also drop the dependency of L

from the position. Furthermore, L will only depend on the global incident direction

ωg
i . Hence, we can use the substitution: L(x, ωi)→ L(ωg

i). With these simplifications,

Eq. (5.6) can be rewritten as follows:

Y (x) = ρ(x)

∫
Ω

L(ωg
i) (ωi · n) dωi (5.7)

In order to compute the integral of Eq. (5.7), we need to express all the quantities in

either global or local coordinates. In order to express the incident direction vectors

from one reference system to the other we need to perform a 3D rotation, that can be

easily expressed as ωg
i = Rα,β ωi and ωi = R−1

α,β ω
g
i , where α and β represent the 3D

rotation of the local surface normal n in the global reference system. Hence, Eq. (5.7)

becomes:

Y (x) = ρ(x)

∫
Ω

L(Rα,β ωi) (ωi · n) dωi (5.8)

142

As both n and ωi are unit vectors that lie on the unit sphere, all the functions involved

in Eq. (5.8) can be expanded in the spherical harmonic series. Let us consider a generic

function f(θ, ϕ) defined on the unit sphere; we can expand it as:

f(θ, ϕ) =
∞∑
l=0

l∑
m=−l

fl,m ξl,m(θ, ϕ) (5.9)

where:

• ξl,m(.) is the spherical harmonic of order l and index m. For a given order l there

are 2l + 1 harmonics. These functions form an orthonormal basis for functions

on the unit sphere:

⟨ξl,m, ξl′,m′⟩ =

∫ 2π

ϕ=0

∫ π

θ=0

ξl,m(θ, ϕ)ξl′,m′(θ, ϕ) sin θ dθdϕ = δl,l′δm,m′ (5.10)

• fl,m are the coefficients of the harmonic series expansion, that can be computed

as the inner product:

fl,m = ⟨f, ξl,m⟩ =

∫ 2π

ϕ=0

∫ π

θ=0

f(θ, ϕ)ξl,m(θ, ϕ) sin θ dθdϕ (5.11)

For simplicity of notation, we will now linearize the indices of the harmonic functions.

As discussed in [119], by using the first 9 spherical harmonics (up to order l = 2),

it is possible to obtain a really good approximation of the majority of lighting fields.

Note that, in Eq. (5.8), we are only considering the upper hemisphere as the domain of

integration, while the spherical harmonic functions are defined on the complete sphere.

This problem can be solved by substituting the (wi · n) term with a transfer function

defined as follows:

A(ωi,n) =

(ωi · n) if ωi ∈ Ω

0 otherwise

(5.12)

And using the complete sphere as a domain for integration.

After expanding both L(.) and A(.) as harmonic series and truncating them at

the first 9 terms of the expansion, it can be shown (the reader is referred to [119] for

an in-depth derivation) that the following approximation holds:

143

Y (x) ≈ ρ(x)
9∑

i=1

Libi(n) (5.13)

where Li are the harmonic series expansion coefficients of the incoming light L

and bi(n) are the basis functions expressed in Cartesian coordinates. Note that the

equations seen so far can be applied independently on each wavelength. If we consider

the wavelengths corresponding to the R, G, and B channels, we can rewrite Eq. (5.13)

as:

Ŷ(x) = diag(ρ(x))Lb(n) (5.14)

where:

• Ŷ(x) ∈ R3 is the approximation of the reflectance Y (x) for the 3 R,G,B channels.

• ρ(x) ∈ R3 is a vector containing the BRDF, or albedo, evaluated at point x for

the R, G and B channels.

• L ∈ R3×9 is a matrix containing the first 9 harmonic series expansion coefficients

for the R, G, and B channels.

Let us now consider a 2D photography of a 3D scene, with S = H ×W pixels.

As each point x in the 3D space is projected to a pixel coordinate, we can directly

apply Eq. (5.14) to describe the intensity values of each R,G,B intensity at each pixel

coordinate. Let us denote by Î ∈ R3×S the matrix of linearized stacked RGB pixels.

Analogously, we define A ∈ R3×S as the matrix containing the albedo R,G,B values

at each pixel, and N ∈ R3×S as a matrix containing the surface normals, evaluated at

each pixel coordinate, expressed as vectors with 3 Cartesian components. Finally, we

define B(N) ∈ R9×S as the matrix obtained by evaluating b(n) on the surface normal

at each pixel.

We can now write Eq. (5.14) for the whole image as:

Î
lin

= A⊙ (LB(N)) (5.15)

144

where ⊙ is the Hadamard product (element-wise).

In order to simulate the post-processing of a real camera we also apply a gamma

correction on the obtained intensities:

Î = [(Î
lin

i,j,c)
1/γ], i = 1, .., H, j = 1, ..,W, c = 1, .., 3 (5.16)

We now compose Eq. (5.15) and Eq. (5.16) in a compact way as:

Î = f(A,N,L) (5.17)

The function f(.) implements the differentiable forward renderer used by the

authors as a decoder of their InverseRenderNet architecture. Note that, during infer-

ence, while both the surface normals and the albedo maps are directly predicted by

the encoder, the L coefficients are obtained by minimizing the error between the input

image I and the reconstructed version through f(.).

5.3.2 Proposed approach

In Fig. 5.18 the architecture of the proposed method is shown. In the upper

branch of the diagram, the InverseRenderNet is used to predict the albedo, normals,

and light coefficients of the input image, denoted as Aglob,Nglob,Lglob, respectively.

In the lower branch, Mask R-CNN (see Section 5.1) is used to perform an instance

segmentation on the input image and extract the ROIs Pi, i = 1, .., k, containing the

recognized objects. The k ROIs are given as input to the InverseRenderNet and the

corresponding albedos Ai, normals Ni, and lighting coefficients Li, are obtained, for

i = 1, .., k.

An embedding block is then used to combine both local and global predictions

and build the features X and Zrel. Finally, these features are given as input to a CNN-

based classifier that is trained to predict a global, binary label on the image: pristine

VS forged.

145

In
ve

rs
e

R
en

d
e

rN
et

M
as

k
R

-C
N

N

Fo
rg

ed
/

p
ri

st
in

e

In
ve

rs
e

R
en

d
e

rN
et

Sh
ar

ed

w
ei

gh
ts

em
b

ed
d

in
g

𝐍
𝑔
𝑙𝑜
𝑏

𝐀
𝑔
𝑙𝑜
𝑏

𝐋
𝑔
𝑙𝑜
𝑏
∈
ℝ
3
×
9

𝐋
1 𝐋
2 𝐋
𝑘
∈
ℝ
3
×
9

𝐏
1

𝐏
2

𝐏
𝑘

𝐍
1

𝐍
2

𝐀
1

𝐍
𝑘

𝐀
2

𝐀
𝑘

B
in

cl
as

si
fi

er

𝐈
∈
ℝ
𝐻
×
𝑊
×
3

𝐗
∈
ℝ
𝐻
×
𝑊
×
2
7

𝐙
𝑟
𝑒
𝑙
∈
ℝ
3

F
ig

u
re

5.
18

:
A

rc
h

it
ec

tu
re

of
p

ro
p

os
ed

sp
li

ci
n

g
d

et
ec

ti
on

ap
p

ro
ac

h
b

as
ed

on
In

ve
rs

eR
en

d
er

N
et

[1
51

].

146

5.3.2.1 Feature extraction

This section describes the feature extraction procedure (implemented in the

embedding block in Fig. 5.18).

Let

Xc = [Xc
i,j,h] =

[Lm(c, h)], h = 1, .., 9, c = 1, 2, 3, if ∃m ∈ {1, .., k} | (i, j) ∈ Pm,

[Lglob(c, h)], h = 1, ..9, c = 1, 2, 3 otherwise

(5.18)

be the map of local and global light coefficients for the channel c. This map assigns

each pixel (i, j) to the set of light coefficients predicted for a particular segmented

patch if (i, j) belongs to that patch, otherwise, the pixel is assigned to the set of global

light coefficients. The feature map X ∈ RH×W×27 is obtained by stacking on the third

dimension the maps for the three channels Xc.

We also designed a “cross-relighting” feature, that evaluates the effect of re-

lighting a patch u with the light coefficients of another patch v, through the forward

rendering function f(.) (Eq. (5.17)). The idea is that, under the assumption of distant

lighting, if we relight a patch with a sufficiently different light field (such as the one

predicted from a spliced patch), the obtained relighted patch should be quite different

from the original one. Formally, we define the cross-relighting error matrix as follows:

Erel = [eu,v] = [||Pu − P̂v
u||2] = [||Pu − f(Au,Nu,Lv)||2], u, v = 1, .., k (5.19)

Finally, we define the feature vector Zrel ∈ R3 as:

Zrel = [min(Erel,max(Erel), avg(Erel)] (5.20)

In this way, we obtain a fixed-size feature vector, regardless of the number of extracted

patches. Note that, in the case in which no patches are extracted by Mask R-CNN, we

simply set Zrel = [0, 0, 0].

147

Dropout
P=0.5

flatten

16 3x3
Conv +
ReLu

Max
Pool

16 3x3
Conv +
ReLu

Max
Pool

32 3x3
Conv +
ReLu

Max
Pool

32 3x3
Conv +
ReLu

Max
Pool

co
n

cat

𝐙𝑟𝑒𝑙 ∈ ℝ
3

Input 2

Dense
512

Dense
256

Dense 1
+

sigmoid

Input 1

𝐗 ∈ ℝ𝐻×𝑊×27

Figure 5.19: Architecture of binary classifier employed in the proposed method.

5.3.2.2 Binary classifier

In this section, we briefly describe the used binary classifier (red block in

Fig. 5.18).

First, we input the light coefficients map X to a set of four convolutional layers

+ ReLu activation functions, each followed by max pooling. The number of filters is

16, 16, 32, 32, for the four layers, respectively. Then, we flatten the obtained feature

and pass it through a dropout layer, with a probability of 0.5 of removing each neuron.

Then, we concatenate this vector with the other input feature Zrel. The obtained

vector is then given as input to a fully connected layer with 512 and neurons, followed

by another fully connected layer with 256 neurons. Finally, a neuron with a sigmoid

activation function is used to obtain the single output probability.

5.4 Experiments

In this section, we discuss the experimental setup and the results obtained with

our InverseRenderNet-based approach.

148

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curve AUC 0.657

Figure 5.20: ROC curve obtained with proposed InverseRenderNet-based approach on
synthetic splicing dataset.

Similarly to the approach discussed in Section 5.2, we first tested the method on

the synthetic splicing dataset derived from SynthOut. Subsequently, we repeated the

experiment on the CASIA2 dataset. Note that, in both experiments, the InverseRen-

derNet was used without fine-tuning, as this architecture is self-supervised. Also, in

the experiment on the synthetic splicing dataset, the objects were segmented by using

the available masks (as was done in Section 5.2). In this way, we can fairly compare

the two proposed methods. Finally, the binary classifier (discussed in Section 5.3.2.2)

is trained from scratch on the two datasets for the two experiments, respectively.

5.4.1 Results evaluation on Synthetic dataset

This section presents the results obtained with our splicing detection framework

evaluated on the synthetic splicing dataset (see Section 5.2.1).

We obtained an accuracy of 0.608, a precision of 0.681, and an F1-score of 0.662.

In Fig. 5.20 the ROC curve, with an AUC of 0.657 is shown, while the confusion matrix

is reported in Fig. 5.21.

149

0 1
Predicted

0
1

Ac
tu

al

54 43

51 92

50

60

70

80

90

confusion matrix

Figure 5.21: Confusion matrix obtained with proposed InverseRenderNet-based ap-
proach on synthetic splicing dataset.

Analogously to what we did for our first approach, we performed a test on

the 98%-confidence splicing dataset, in which the splicing attacks are done only using

images with an angular difference of light greater than 50 degrees. Predictably, the

performance improved, with an accuracy of 0.776, a precision of 0.819, and an F1-

score of 0.848. The ROC curve (AUC = 0.821) and the confusion matrix are shown in

Fig. 5.22 and Fig. 5.23, respectively.

5.4.2 Results evaluation on Benchmark dataset

The accuracy, precision, and F1-score obtained on CASIA2 are 0.688, 0.349 and

0.326, respectively. The ROC curve, shown in Fig. 5.25 has a corresponding AUC

of 0.646. The confusion matrix reported in Fig. 5.24, shows that our approach still

commits a considerable amount of false negative errors.

5.5 Discussion

In this section, we briefly compare and comment on the results obtained with

our two light-based splicing detection methods. For brevity of notation, we refer to

the first method, described in Section 5.1 as light1, and to the second one, presented

in Section 5.3.2 as light2.

150

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curve AUC 0.821

Figure 5.22: ROC curve obtained with proposed InverseRenderNet-based approach on
98%-confidence splicing dataset.

0 1
Predicted

0
1

Ac
tu

al

52 49

30 221

50

75

100

125

150

175

200

confusion matrix

Figure 5.23: Confusion matrix obtained with proposed InverseRenderNet-based ap-
proach on 98%-confidence splicing dataset.

151

0 1
Predicted

0
1

Ac
tu

al

159 129

41 55

60

80

100

120

140

confusion matrix

Figure 5.24: Confusion matrix obtained with proposed InverseRenderNet-based ap-
proach on CASIA2 dataset.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curve AUC 0.646

Figure 5.25: ROC curve obtained with proposed InverseRenderNet-based approach on
CASIA2 dataset.

152

Synth-spliced Synth-spliced filt. CASIA2

light1 0.655 0.785 0.381

light2 0.662 0.848 0.463

Table 5.1: Comparison of F1-score between the two proposed light-based splicing de-
tection methods on the three mentioned datasets.

As can be noted from the results presented in Section 5.2 and Section 5.4, the

performances of both methods are not satisfactory. In particular, in the case of realistic

images, for which no ground truth information about light is available (such as in the

case of CASIA2), our approaches cannot be directly applied in a reliable way, as there

is no possibility to fine-tune the light estimation network, which is the core of our whole

detection pipeline. However, we showed that when this is possible and the hypothesis

of sufficiently different light fields in the spliced images is met, we can successfully train

the light network on the new data and obtain good detection results (as for the filtered

synthetic splicing dataset).

Table 5.1 shows that light2 outperforms light1, especially for the filtered syn-

thetic splicing dataset, for which the difference in terms of F1-score is almost 6%.

The same happens in the CASIA2 case, for which the improvement of the F1-score is

more than 8%. This is probably due to the intrinsic property of self-supervision of the

InverseRenderNet architecture, which enhances its generalization ability.

Even if the performance are not really good, we think that these methods can

still be applied in conjunction with other approaches, possibly in a forensic scenario

where the explainability of the adopted techniques is an important requirement. Both

the local and global light predictions obtained with our methods can, in fact, be used

as clues for the localization of forged areas or as features to combine with other local

descriptors. Moreover, Farid has recently shown [47] that even state-of-the-art text-

guided generative diffusion models, such as DALL-E2, struggle with complex lighting

and reflections, due to their reliance on generating images that appear visually realistic

153

to humans rather than on explicit physical or geometric modeling. This underscores

the importance of maintaining the use of physical models and constraints in digital

forensic research as a complementary tool for detecting image forgeries.

154

Chapter 6

ENSEMBLE FORGERY DETECTION APPROACH

In this chapter, we describe an ensemble architecture that exploits the methods

presented in the previous chapters, with the aim of (i) achieving better forgery de-

tection performance, (ii) performing multi-class classification, distinguishing between

copy-move and splicing forgery types, (iii) providing localization of the forged areas

and (iv) retrieving the source regions used to perform the attack in the case of copy-

move forgeries. The idea we leveraged is to train a neural network - “FusionForgery”

- to combine the outputs of a set of available forgery detection approaches (we refer

collectively to these as “base” methods). It is worth noting that these approaches oper-

ate independently of each other, with no constraints on their architecture or structure.

The only requirement is that the output of each method can be encoded as a fixed-size,

one-dimensional vector, though these vectors may vary in size across methods.

Due to the scarcity and lack of quality of annotated data, both for classification

and localization (see Section 2.9), in order to demonstrate the effectiveness of the pro-

posed method, we extended our synthetic splicing dataset (see Section 5.2.1), by adding

a set of copy-moved images and corresponding source/forged segmentation masks. This

dataset has been used to train and evaluate both the base methods and the ensemble

net. The obtained performance was excellent in the case of binary classification and

localization. Also, the results showed that the ensemble approach outperforms the

base methods in terms of F1-score, accuracy, and precision. Still, there is room for

improvement in the task of multi-class decision and source region retrieval.

This chapter is organized as follows: Section 6.1 presents the architecture of the

proposed ensemble scheme, the base methods, and the computational blocks used for

multi-class decision and source region retrieval. Section 6.2 gives some details about

155

the synthetic dataset used for training and evaluating the proposed approach. Finally,

Section 6.3 discusses the experimental results.

6.1 Method overview

The architecture and logic flow of the proposed ensemble is shown in Fig. 6.1.

We use two “base” methods to perform an initial binary classification on the image

(pristine vs. forged). For simplicity, we refer to these methods as Base1 and Base2,

respectively. Base1 is the SIFT+DBSCAN-based approach presented in Chapter 3,

and Base2 is a U-net-based network that outputs the segmentation map of the areas

identified as forged.

A feature vector x ∈ R260 is then built by combining the outputs of the base

methods and fed to a “FusionForgery” module that outputs the final probability of

forgery pf . The image is labeled pristine if pf ≤ 0.5 and forged otherwise. In the case

of forgery, our method tries to make a further decision regarding the type of forgery,

namely splicing or copy-move. This is done as follows: a “region coherence” condition

between the keypoints extracted with Base1 method and the forgery segmentation

mask B is tested. If the condition is satisfied, it means that there is an agreement

between the localization obtained with keypoints matching (for copy-move detection)

and the segmented forged areas. In this case, the image is labeled as copy-moved, and

an estimation of the source regions used in the copy-move attack is performed. If the

condition is not satisfied, further analysis is carried out to check if the image has been

spliced. This is done by analyzing the consistency of the light field between the whole

image and the predicted forged regions in B. We accomplish this by means of our light

direction estimation model, described in Chapter 4. If the light consistency condition

is not met, the image is labeled as spliced, otherwise as “unknown forged”.

In the next sections we describe, in more detail, the base methods and Fusion-

Forgery model, as long as the region coherence, source region retrieval, and splicing

analysis steps.

156

SIFT + DBSCAN
(Base1)

Fusio
nForg

ery

Light-based
splicing det.

SIFT/Seg.
Region

coherence

Pristine

Forged

stop

Splicing
/

unknown

Splicing
candidate

Copy-move
source region

retrieval

Copy-move

Seg. forgery
det. (Base2)

Figure 6.1: Logic flow-chart of proposed ensemble forgery detection approach.

6.1.1 Base2 method

The second forgery detection method employed in our architecture, Base2, con-

sists of an Encoder-Decoder network, based upon a U-net, which outputs the proba-

bility map B of the forged zones in the image. In this implementation, we used four

layers for the down-sampling branch (encoder) and four layers for the up-sampling

branch (decoder). In the encoder, we used convolutional layers and max pooling,

while in the decoder we used transposed convolutional layers and up-sampling layers.

Skip-connections are implemented as concatenation between feature maps at the same

corresponding layers in the encoder and decoder branches. The architecture is shown

in Fig. 6.2. Note that, as this model is fully convolutional, multiple input resolutions

can be handled.

6.1.2 FusionForgery classifier

In our ensemble architecture, we embedded a “FusionForgery” module that

learns how to combine the outputs of the base methods, aiming to improve the forgery

157

Layer 1

Layer 2

Layer 4

𝐁

Layer 3

Conv + ReLu

Max pooling

Up-sampling

Skip connection -
concatenation

Transp. Conv

Figure 6.2: U-net architecture of “Base2” forgery localization model.

detection performance. This module consists of a simple fully connected neural network

that takes as input a feature vector x ∈ R260 built as follows:

x1:256 = hist(B),

x257 = p1

x258 = Nmatches

x259 = Nclusters

x260 = α

(6.1)

where:

• p1 ∈ {0, 1} is the binary classification obtained with the Keypoint-based algo-

rithm (Base1)

• Nmatches and Nclusters are, respectively, the number of keyoints’ matches and clus-

ters identified.

• α is the average number of keypoints contained in a cluster.

158

• hist(B) is the histogram of the forgery probability map B ∈ RH×W obtained as

output of the Base2 model. Note that the histogram is computed by subdividing

the [0, 1] interval in 256 equally sized bins.

Of course, different choices in the form of x could be used. One could, for

example, encode the forgery segmentation map in a different way than just using

its histogram, or use different statistics obtained as output from the keypoints-based

method. However, we wanted to maintain the “philosophy” of the ensemble approach,

in which typically only the final outputs of the involved methods are combined. In

this way, methods for which intermediate information/feature vectors are not available

could still be plugged into our architecture. Note that the flexibility of the proposed

framework lies in the fact that it can be extended by including more, independent base

methods. The base methods don’t require a particular structure or architecture, as

long as their output is binary or it can be encoded and flattened in a fixed-size feature

vector. However, it will be necessary to change the input layer of the Fusion classifier

according to the dimension of the new feature vector and, consequently, re-train the

Fusion classifier.

The architecture of the FusionForgery model (shown in Fig. 6.3) is composed

of five fully connected layers and a dropout layer in order to avoid overfitting. The

output layer is composed of a neuron with a Sigmoid activation function, that outputs

the final forgery probability pf .

6.1.3 Region coherence analysis

When the image is labeled as forged by the FusionForgery classifier (i.e., pf >

0.5), a test is performed to assess a possible copy-move attack. To do this, we designed

an algorithm that takes as input the segmentation map B and the list of clustered

keypoints and verifies whether the areas labeled as forged in B are consistent with the

position of the keypoints (see Fig. 6.4). If at least one cluster is found for which more

than 50% of its keypoints are inside a forged region the image is labeled as copy-moved

and the subsequent source region retrieval procedure is performed.

159

𝑥 ∈ ℝ261

512
neurons

512
neurons

1024
neurons

2048
neurons

1024
neurons

𝑝𝑓

Dropout
p=0.5

Figure 6.3: Architecture of FusionForgery model.

At least 1 cluster with > 50%
keypoints in white regions ?

→ copy-move

Segmentation map 𝐁

Clustered keypoints and
matches

SIFT/Seg. Region coherence

Figure 6.4: Region coherence analysis between forgery segmentation map B and key-
points positions.

160

6.1.4 Source region retrieval

This section describes the source region retrieval algorithm we developed that is

applied when an image is labeled as copy-moved by the region coherence analysis. In

this case, at least one cluster has more than half of its keypoints inside a forged region

in B.

Let X ∈ RN×2 be the keypoints’ coordinates in a cluster for which the region

coherence condition is valid. Let then X′ ∈ RN×2 be the coordinates of the matching

keypoints, i.e., if (x, y) ∈ X, then (x′, y′) ∈ X′ ⇐⇒ [(x, y), (x′, y′)] is a match.

Let us then assume that the copy-move attack has been performed by applying

a linear transformation to the source region pixel coordinates. Denoting by H ∈ R2×3

the transformation matrix, we can write X
′T = HWT , where W = [X|1] ∈ RN×3 is

the extension of X to homogeneous coordinates. Provided that N ≥ 3, an estimation

H̃ of the transformation matrix H can be obtained in a closed form by means of a least

squared errors optimal solution or with a noise-robust algorithm such as RANSAC [48].

A visualization of the transformation matrix estimation is shown in Fig. 6.5.

Once we have computed the transformation matrices estimates H̃i, for each

cluster i that satisfies the region coherence condition, we can retrieve each source

region map Bs
i by applying the matrices H̃i to the forgery segmentation map B.

Note that the quality of the retrieved source region maps is heavily dependent on

the clusters obtained with the Base1 method. Additionally, if the number of keypoints

in a cluster is not sufficient, the matrix estimation could fail; in this case, the source

region is not retrieved.

6.1.5 Splicing detection

This section describes the last computational block of our unified ensemble

forgery detection approach: the splicing analysis. For simplicity, we refer to this

method as Base3. This procedure is performed when the region coherence analysis

gives a negative outcome, due to the non-consistency between the keypoints’ positions

and the forged regions identified by the Base2 method.

161

𝐗

𝐗′

෩𝐻

Figure 6.5: A copy-moved image with matching clusters X and X′. H is the transfor-
mation matrix between the points coordinates of the two clusters.

The splicing analysis is done by checking the consistency between light direction

vectors across the input image. In order to do that, we use our light direction estimation

network (described in Chapter 4) as follows:

1. a connected component analysis is run on the binary forgery segmentation map

B and the corresponding ROIs are extracted. The smallest ones (with an area

under a certain threshold) are discarded.

2. If no ROIs remain, the splicing analysis cannot be done and the image is labeled

as “unknown forged”. Go to point 7.

3. The global 3D light direction vector Lg is predicted by the light estimation net-

work on the whole image.

4. For each extracted ROI i, its local 3D light direction vector Li is predicted by

the light estimation network.

162

Connected
comp. Alg.

Light prediction
net

𝐋1

𝐋3

𝐋𝑔

𝐋2

Angular dif.
vector

𝐝
max 𝐝 > 𝛼 ?
→ Splicing

Forgery segm. Map 𝐁

Input img

Light-based splicing det.

Figure 6.6: Overview of Base3 method: light-based splicing detection procedure

5. The angular difference vector d = [di] = [arccos
(

Lg ·Li

||Lg ||∗||Li||

)
], i = 1, .., N , where

N is the number of valid ROIs, is computed.

6. If max{d} > α the image is labeled as spliced, as a sufficient inconsistency

between the global and the local light directions is observed. Otherwise, the

image is labeled as copy-moved. We set α = 40 ∗ π
180.0

.

7. End.

A visualization of the light-based splicing detection procedure is shown in Fig. 6.6.

6.2 Dataset generation

This section gives some details about the forgery dataset we built to train and

evaluate the models involved in the proposed ensemble architecture. As stated before

(Section 2.9), the lack of adequately sized benchmark datasets annotated with ground

truth forgery maps makes it difficult to train highly parameterized deep models, in

particular for the task of forgery localization. To cope with this problem, and to assess

163

the validity of the proposed ensemble approach, we built a synthetic forgery dataset,

including both splicing and copy-move attacks and the corresponding ground truth

maps. Note that, in the case of copy-moved images, the pixels belonging to source and

target regions are assigned to different labels in the ground truth maps; in this way,

we will also be able to test the quality of the retrieved source regions.

We started from our Unity-generated dataset SynthOut (Section 4.3.1) and, by

using the objects’ masks (which were also generated with Unity) we created copy-moved

images by selecting one object and pasting it onto a different position in the image. In

order to make the detection more challenging, we also applied linear transformations

such as scaling (0.5 to 1.5 factor) and rotation (up to 90 degrees) before pasting the

cropped object. We also performed copy-move attacks of the “hide” type, in which

a patch of background is selected and pasted onto an object in order to hide it from

the scene. The complete dataset, which we refer to as SynthOutForgery, is created by

including all the copy-moved images, the original images in the SynthOut dataset, and

the images of the synthetic splicing dataset introduced in Section 5.2.1.

In total, the dataset consists of 45507 images, of which 3783 are spliced, 22810

are copy-moved, and 18914 are pristine. While it is true that the dataset is quite

unbalanced in the number of copy-moved vs. spliced images, it must be noted that the

algorithms used for differentiating between these two types of forgeries are not learned

on this dataset. As such, this is not a source of bias towards copy-move decision.

The dataset was split into train, validation, and test subsets, by a proportion

of 70%, 10%, and 20%, respectively. The Base2 model was trained on this dataset.

The FusionForgery classifier, instead, was trained on a dataset obtained by computing

the feature vectors x of all train subset images (as in Eq. (6.1)) and associating the

corresponding binary ground truth label.

6.3 Experimental results

This section describes the detection results and the performance of our ensemble

approach on the unified synthetic forgery dataset SynthOutForgery (see Section 6.2).

164

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curve AUC 0.994

Figure 6.7: ROC curve obtained with proposed ensemble approach on SynthOutForgery
dataset.

The classification performance is reported both in terms of binary prediction (pristine

vs. forged) and in terms of multi-class prediction (pristine vs. copy-move vs. splicing).

The quality of forgery localization of our method is also analyzed, both for forged

regions and source regions (in the case of copy-moved images). The contribution of

each of the two base methods is also investigated by (i) comparing their individual

performance and the performance of the complete ensemble approach and (ii) through

an ablation analysis in which one of the two base methods is excluded from the ar-

chitecture. Both experimental procedures effectively demonstrate the efficacy of the

ensemble strategy.

6.3.1 Binary forgery classification and localization performance

The binary classification performance of the ensemble approach are as follows:

accuracy: 0.965, precision: 0.992, and F1-score: 0.984. The ROC curve and the

associated AUC of 0.994 (Fig. 6.7) further confirm the good detection properties of the

method.

In order to evaluate the performance of localization of forged areas, we used the

165

mean Intersection over Union metric (IoU), defined as follows:

IoU =
|{(i, j) |B(i, j) = 1 ∧Bgt(i, j) = 1}|
|{(i, j) |B(i, j) = 1 ∨Bgt(i, j) = 1}|

mean IoU = avg{IoUi}, ∀i ∈ Test set

(6.2)

where B and Bgt are the predicted and ground truth forgery maps, respectively.

The obtained mean IoU is 0.945.

6.3.1.1 Ablation analysis

In order to investigate the contribution of each of the base methods employed

in the architecture and the effectiveness of the FusionForgery net, we carried out an

ablation study, in which we compared the performance of the two base methods alone

and the ensemble architecture excluding either Base1 or Base2. For reference, we also

compare the results of another forgery detection model we designed -“Base CNN”, used

as baseline. This is a standard Convolutional Neural Network that we trained from

scratch on the SynthOutForgery dataset (its architecture is reported in Fig. 6.8).

The performance in terms of F1-score obtained by the different approaches on

SynthOutForgery is reported in Table 6.1. As it can be seen, the complete ensemble

approach outperforms all of the other methods. The difference in performance between

the complete ensemble approach and the one without Base1 is small though, meaning

that Base1 is not significantly contributing to the overall performance, as can be in-

ferred also by the fact that the obtained F1-score value (0.751) as a standalone method

is not at the same level of the other approaches. Nevertheless, this method is still cru-

cial for the subsequent step of forgery localization in the case of copy-move decision. In

particular, the matches between keypoints are needed for the source regions retrieval

(see Section 6.1.4). This analysis also reveals how significant is the contribution given

by the Base2 method. In fact, when removed from the ensemble, the F1-score drops.

This means that the information carried out by the segmentation map is useful, even

for the purpose of global binary classification. Finally, note how combining the two ap-

proaches through the FusionForgery network allows for better performance compared

166

Dropout
P=0.5

flatten

32 3x3
Conv +
ReLu

Max
Pool

32 3x3
Conv +
ReLu

Max
Pool

64 3x3
Conv +
ReLu

Max
Pool

Dense
64

𝑝1

Figure 6.8: Architecture of “Base CNN” forgery detection model.

to the baseline architecture (“Base CNN”). The same considerations can be drawn by

analyzing the confusion matrices shown in Fig. 6.9.

6.3.2 Splicing detection performance

The proposed method also attempts to distinguish between forgery of type copy-

move and splicing. We used the term “attempts” because, as stated in Section 6.1.5,

the splicing detection algorithm cannot always be applied (this is the case when no valid

Method F1-score

Base CNN 0.969

Base1 0.751

Ensemble No Base2 0.746

Ensemble No Base1 0.981

Ensemble 0.984

Table 6.1: Results of ablation study on SynthOutForgery.

167

0 1
Predicted

0
1

Ac
tu

al

3687 107

215 5087
1000

2000

3000

4000

5000

confusion matrix

(a) “Base CNN method” (Section 6.3.1.1).

0 1
Predicted

0
1

Ac
tu

al

3543 1029

1184 3346
1500

2000

2500

3000

3500

confusion matrix

(b) Base1 method (keypoints-based +
clustering. Chapter 3).

0 1
Predicted

0
1

Ac
tu

al

2908 877

1625 3665

1000

1500

2000

2500

3000

3500

confusion matrix

(c) Ensemble without Base2.

0 1
Predicted

0
1

Ac
tu

al

3757 28

170 5120
1000

2000

3000

4000

5000

confusion matrix

(d) Ensemble without Base1.

0 1
Predicted

0
1

Ac
tu

al

3744 41

120 5170
1000

2000

3000

4000

5000

confusion matrix

(e) Ensemble (Section 6.1.2).

Figure 6.9: Comparison of confusion matrices (0: pristine, 1: forged) obtained on
SynthOutForgery with different approaches in the ablation analysis.

168

0 1 2
Predicted

0
1

2
Ac

tu
al

3745 1 1

73 2036 342

55 75 276 500

1000

1500

2000

2500

3000

3500

confusion matrix

Figure 6.10: Multi-class Confusion matrix obtained with the proposed ensemble
method on SynthOutForgery. The classes are 0: pristine, 1: copy-moved (forgery
type 1), 2: spliced (forgery type 2). In this evaluation, we didn’t consider the images
predicted as “unknown-type forged” (27.2% on the total of test images).

regions can be extracted for light estimation from the forgery map B). In this case,

the image is labeled as “unknown forgery” (“3”). The percentage of testing images

predicted as unknown forgery is 27.2%.

In Fig. 6.10 a confusion matrix with three classes (0: pristine, 1: copy-move,

2: splicing) is shown. Note that in the confusion matrix computation, we are not

considering the images predicted as unknown. As can be seen, there is still room

for improvement, as a lot of copy-moved images are predicted as spliced. Also, as

stated before, the percentage of images lacking a further decision between splicing and

copy-move decision is high.

6.3.3 Source region localization performance

In this section, we analyze the source region localization properties of the pro-

posed method in the case of images labeled as copy-moved.

Similarly to what we did to assess the quality of localization of forged areas,

we use the mean IoU metric. In this case, however, we use, as ground truth, binary

maps where only the source areas are set as “1”, and all the other pixels are assigned

a “0” label. Note that, as stated in Section 6.1.4, the source region cannot always be

169

retrieved; this is the case when the number of valid matching keypoints is not enough to

obtain a reliable transformation matrix. The percentage of correctly predicted copy-

moved images for which the source region retrieval could not be done is still high -

50.5%. Nevertheless, in the cases where the region can be reconstructed, we get a very

good mean IoU performance of 0.832. Examples of correctly predicted source regions

is shown in Fig. 6.11, while some of the (few) fail cases are depicted in Fig. 6.12.

6.4 Discussion

In this chapter, an ensemble architecture to combine different forgery detection

methods was presented, with the aim of achieving better performance.

A peculiarity of the proposed method is that, in the case of forged-classified

images, it attempts to provide a more detailed classification regarding the type of

forgery, differentiating between splicing and copy-move attacks. Also, localization of

the forged areas and the source regions (in the copy-move case) is given as output.

The proposed ensemble architecture achieved excellent performance for the bi-

nary classification and localization task (forged vs. pristine). Furthermore, it outper-

formed all the individual base methods involved, in terms of F1-score, confirming the

validity of the fusion strategy.

Nevertheless, there is still room for improvement in the task of distinguishing

between splicing and copy-move attacks, as the performance is still lacking. This is

due to the fact that the splicing detection approach based on the light inconsistency

analysis performs well only when the light conditions of the target image and the spliced

portion, are different “enough”.

Another point of improvement of the proposed approach relates to the task of

source region localization (for copy-moved images). As mentioned in Section 6.3, in

fact, in half of the cases of correctly labeled copy-moved images, the source region

retrieval algorithm could not be applied due to the lack of valid matched keypoints

obtained with the Base2 method. In the other cases, though, the source region is

reconstructed with good accuracy. Lastly, it is important to note the limitations of

170

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.11: Examples of source (gray) /forged (white) regions maps correctly predicted
by the proposed source region retrieval method in copy-moved images. Figs. a - c show
the input images, while the predicted maps and the corresponding ground truth are
shown in Figs. d - f and g - e, respectively. Finally, Figs. g - h show the results of the
keypoints-based method.

171

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.12: Examples of source (gray) /forged (white) regions maps wrongly predicted
with proposed source region retrieval method in copy-moved images. Figs. a - c show
the input images, while the predicted maps and the corresponding ground truth are
shown in Figs. d - f and g - e, respectively. Finally, Figs. g - h show the results of the
keypoints - based method.

172

our proposed approach when applied to compressed images. Since the components of

the architecture were exclusively trained on our SynthOutForgery dataset comprising

uncompressed PNG images, the method may not perform optimally on JPG images

with varying compression levels. To enhance its generalization capabilities on this

type of data, future work will focus on creating a more diverse dataset that includes

images with different levels of compression and training the proposed architecture on

this dataset.

173

CONCLUSIONS

The main contribution of this thesis is the development of a unified ensemble

approach for forgery detection and localization in digital images. In particular, we

focused our attention on the detection of two of the most common, yet effective types

of forgery attacks: copy-move and splicing. Throughout this thesis, we reviewed, com-

pared, and developed a set of “base” forgery detection and localization approaches, that

were used as building blocks in our ensemble architecture to improve the performance

of the single methods.

In chapter 2, we performed extensive research on the state of the art in the field

of forgery detection, with a particular interest in the most recent deep-learning-based

approaches. A comparison of their performance was carried out on the most cited

benchmark datasets in this field. This analysis highlighted the fact that, even if most

of these approaches seem promising, they can hardly be compared in terms of perfor-

mance, as they are typically evaluated on some custom-built datasets or only on a few

of the benchmark ones. This is usually done because, as these are typically supervised

deep learning-based methods, they require a great amount of precisely annotated data,

which is not the case for the task of forgery detection. The lack of adequately sized

and precisely annotated data is, in fact, one of the points that pushed us towards the

implementation of two data generation algorithms, both for training and evaluation of

deep learning approaches.

Chapter 3 presents a keypoint-based copy-move algorithm that uses density-

based clustering to filter out weak matches between keypoints. This method was shown

to perform really well on two benchmark datasets, outperforming one of the most cited

state of the art method, in terms of precision and accuracy.

174

Chapter 4 presents a novel architecture to estimate the 3D light direction in

outdoor images. The main peculiarity of this approach is that it is a fusion of a data-

driven, learning-based approach, and a physically inspired illumination model. In order

to train this architecture, we designed two data generation algorithms, that allowed

us to build two datasets with a great number of precisely annotated light information.

The first, SynthOut, is a computer graphic rendered dataset, in which outdoor scenes

involving simple, yet realistic objects are depicted in a great variety of lighting condi-

tions. The second, RealOut, is a set of outdoor realistic images automatically extracted

from 360-degrees high-resolution panoramas in latitude-longitude format. The light di-

rection is automatically inferred from each panorama from our generation algorithm.

As a matter of fact, the two data generation algorithms also constitute an important

contribution, as they address the problem of data scarcity even in the research field of

intrinsic scene understanding and, more in general, inverse rendering of digital images.

We trained and evaluated the proposed method on the two generated datasets, achiev-

ing satisfactory regression performance. Also, through an extensive ablation study, we

demonstrated how the embedding of the physical model in our architecture effectively

improves performance with respect to a data-driven-only approach.

The light direction estimation model has been used as the main building block

in a splicing detection approach, presented in chapter 5. This method aims to detect

spliced regions by checking the (in)consistency of 3D light direction vectors across

multiple patches of the input image with respect to the global light direction (relative to

the whole image). A feature vector is then built by embedding the extracted vectors and

a classifier is trained to output binary prediction: pristine vs. spliced. The prediction

performance was satisfactory on a synthetic splicing dataset that we derived from the

SynthOut. Though, the model’s performance was not as good on CASIA2, which is one

of the most challenging benchmark datasets. This is due to the fact that our approach

relies on the light estimation task, which in turn, requires the involved light estimation

network to be trained on the target data. This was not possible in the case of most

benchmark datasets, as the ground truth forgery maps are usually not available.

175

Finally, chapter 6 details the architecture of the proposed unified ensemble

scheme for forgery detection and localization. In this architecture, a module is trained

to optimally combine the outputs of two “base” methods and assign a binary label

(forged vs. pristine) to the input image. The binary forgery map is also given as out-

put. Then, a “region coherence” analysis is performed on the forgery map in order to

assess the presence of a copy-move attack. In the positive case, the proposed method

attempts to reconstruct the source regions. In the negative case, a light-based splicing

detection, based on the architecture discussed in chapter 4 is performed, analyzing the

(in)consistency between the predicted light direction vectors across multiple patches in

the image. The models and computational blocks involved in the ensemble scheme need

different types of ground truth information (including light direction, source/forgery

localization maps, and spliced vs. copy-moved labels). Hence, in order to assess the va-

lidity of the proposed approach, we generated a big, unified, high-resolution synthetic

forgery detection dataset that includes pristine, copy-moved, and spliced images, along

with the associated forgery localization masks. We then trained and evaluated the

proposed method on this dataset, achieving really good detection performance and

localization for the binary prediction task (forged vs. pristine). Through an ablation

study, we showed how the achieved performance of the complete ensemble framework

is higher than the “base” forgery detection methods developed in this work.

A peculiarity of the ensemble approach is its modularity. In fact, more “base”

forgery detection methods can easily be included in our scheme by embedding their

outputs in the feature vector used by the network that combines all the outputs of

“base” detectors.

Limitations and future directions

In this last paragraph, we highlight some possible future research directions and

challenges. We start by analyzing some of the current limitations of the proposed en-

semble architecture and by proposing possible improvements and extensions. Then, we

176

focus our attention on possible research directions to take into account more sophisti-

cated and powerful technologies that leverage generative A.I. for creating realistic fake

content.

1. The ensemble architecture should be expanded by including more base forgery

detection methods.

2. The classification of the type of attack, i.e., copy-move vs. splicing should be im-

proved, possibly by using/combining more sophisticated splicing detection meth-

ods.

3. The mechanism to retrieve the source region in the case of copy-move forgeries

should be refined in order to be more robust when not many keypoints’ matches

are found.

In this work, we didn’t address more sophisticated and powerful attacks such

as GAN/AI-generated content, adversarial attacks, and augmented reality. In partic-

ular, the rapid development of generative approaches like diffusion-based models (e.g.,

DALL-E2) has made it increasingly difficult to distinguish between real and generated

content, posing new challenges for forgery detection methods. Also, because these

models are evolving at a pace unthinkable just until a couple of years ago, mainly

thanks to the hype about A.I. among big-tech companies, the media and the general

public, new detection approaches should specifically address this kind of technology

and evolve at a similar pace.

One approach to detect AI-generated content could be to leverage adversarial

training, where a forgery detection model is trained concurrently with a generative

model (in a GAN fashion). This could help the detector learn to identify the subtle

artifacts and patterns associated with AI-generated forgeries. Conversely, an attacker

could make use of adversarial attacks (see Section 2.9) that are specifically designed

to fool forgery detection methods.

177

Let’s consider now the DALL-E2 model. DALL-E2 images are created by a

diffusion model, which involves applying a series of random transformations to a small

initial image. As a result, these images may have certain patterns or textures that are

unique to the specific diffusion model employed. By analyzing the statistical properties

of these images, it may be possible to detect these unique patterns and use them as a

clue for a generated image.

Finally, to better evaluate the performance of forgery detection methods on AI-

generated content, it is crucial to create new benchmark datasets containing a diverse

range of images generated by various generative models such as diffusion models. This

will allow researchers to systematically compare the performance of different meth-

ods and identify areas for improvement. Similarly as for the detection methods, these

datasets should be constantly updated by including content generated with newer ver-

sions of the aforementioned models or with newer approaches that generate even better

content.

178

BIBLIOGRAPHY

[1] 2022 ieee video and image processing cup - synthetic image detection challenge.
https://grip-unina.github.io/vipcup2022/. [Accessed: 05-may-2023].

[2] Adobe Photoshop. https://www.adobe.com/it/products/photoshop.html. [Ac-
cessed: 16-march-2022].

[3] Blog post on Elcomsoft, April 2011. https://blog.elcomsoft.com/2011/04/
nikon-image-authentication-system-compromised/. [Accessed: 16-march-2022].

[4] Faceswap. https://github.com/deepfakes/faceswap. [Accessed: 16-march-2022].

[5] Gimp. https://www.gimp.org/. [Accessed: 16-march-2022].

[6] Interactive Web demo: Whichfaceisreal. https://www.whichfaceisreal.com/
index.php. [Accessed: 16-march-2022].

[7] Keek. https://keeex.me/products/. [Accessed: 16-march-2022].

[8] Numbersprotocol.io. https://numbersprotocol.io/. [Accessed: 16-march-2022].

[9] Online article on Arstechnica, May 2007. https://arstechnica.com/
uncategorized/2007/05/latest-aacs-revision-defeated-a-week-before-release/.
[Accessed: 16-march-2022].

[10] Single image surface normal estimation. https://github.com/dfan/
single-image-surface-normal-estimation. [Accessed: 30-june-2022].

[11] Younis Abdalla, Tariq Iqbal, and Mohamed Shehata. Copy-move forgery detec-
tion and localization using a generative adversarial network and convolutional
neural-network. Information, 10:286, 09 2019.

[12] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurélien Lucchi, Pascal Fua,
and Sabine Süsstrunk. Slic superpixels. Technical report, EPFL, 2010.

[13] Ritu Agarwal and Om Verma. An efficient copy move forgery detection using
deep learning feature extraction and matching algorithm. Multimedia Tools and
Applications, 79, 03 2020.

179

https://grip-unina.github.io/vipcup2022/
https://www.adobe.com/it/products/photoshop.html
https://blog.elcomsoft.com/2011/04/nikon-image-authentication-system-compromised/
https://blog.elcomsoft.com/2011/04/nikon-image-authentication-system-compromised/
https://github.com/deepfakes/faceswap
https://www.gimp.org/
https://www.whichfaceisreal.com/index.php
https://www.whichfaceisreal.com/index.php
https://keeex.me/products/
https://numbersprotocol.io/
https://arstechnica.com/uncategorized/2007/05/latest-aacs-revision-defeated-a-week-before-release/
https://arstechnica.com/uncategorized/2007/05/latest-aacs-revision-defeated-a-week-before-release/
https://github.com/dfan/single-image-surface-normal-estimation
https://github.com/dfan/single-image-surface-normal-estimation

[14] Irene Amerini, Lamberto Ballan, Roberto Caldelli, Alberto Del Bimbo, and
Giuseppe Serra. A SIFT-based forensic method for copy-move attack detection
and transformation recovery. IEEE Transactions on Information Forensics and
Security, pages 1099–1110, 2011.

[15] Michael Konrad Arnold, Martin Schmucker, and Stephen D Wolthusen. Tech-
niques and applications of digital watermarking and content protection. Artech
House, 2003.

[16] M. Barni, Q. T. Phan, and B. Tondi. Copy move source-target disambiguation
through multi-branch cnns. IEEE Transactions on Information Forensics and
Security, 16:1825–1840, 2021.

[17] Patrick Bas, Tomáš Filler, and Tomáš Pevnỳ. “Break Our Steganographic Sys-
tem”: the ins and outs of organizing BOSS. In International Workshop on In-
formation Hiding, pages 59–70, 2011.

[18] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up
robust features (surf). Computer Vision and Image Understanding, 110(3):346 –
359, 2008. Similarity Matching in Computer Vision and Multimedia.

[19] Shida Beigpour, Andreas Kolb, and Sven Kunz. A comprehensive multi-
illuminant dataset for benchmarking of the intrinsic image algorithms. In 2015
IEEE International Conference on Computer Vision (ICCV), pages 172–180,
2015.

[20] Gajanan K Birajdar and Vijay H Mankar. Digital image forgery detection using
passive techniques: A survey. Digital investigation, 10(3):226–245, 2013.

[21] Giulia Boato, Cecilia Pasquini, Antonio L. Stefani, Sebastiano Verde, and Daniele
Miorandi. Trueface: a dataset for the detection of synthetic face images from
social networks. In 2022 IEEE International Joint Conference on Biometrics
(IJCB), pages 1–7, 2022.

[22] Zhe Cao, Hang Gao, Karttikeya Mangalam, Qi-Zhi Cai, Minh Vo, and Jitendra
Malik. Long-term human motion prediction with scene context. In Andrea
Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors, Computer
Vision – ECCV, pages 387–404, 2020.

[23] Jiaxin Chen, Xin Liao, and Zheng Qin. Identifying tampering operations in image
operator chains based on decision fusion. Signal Processing: Image Communica-
tion, 95:116287, 2021.

[24] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets
with sublinear memory cost. 04 2016.

180

[25] Weifeng Chen, Zhao Fu, Dawei Yang, and Jia Deng. Single-image depth percep-
tion in the wild. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 29. Curran
Associates, Inc., 2016. [Accessed: 08-december-2022].

[26] Francois Chollet. Xception: Deep learning with depthwise separable convolu-
tions. pages 1800–1807, 07 2017.

[27] V. Christlein, C. Riess, and E. Angelopoulou. On rotation invariance in copy-
move forgery detection. In 2010 IEEE International Workshop on Information
Forensics and Security, pages 1–6, 2010.

[28] V. Christlein, C. Riess, J. Jordan, C. Riess, and E. Angelopoulou. An evalua-
tion of popular copy-move forgery detection approaches. IEEE Transactions on
Information Forensics and Security, 7(6):1841–1854, 2012.

[29] D. Cozzolino and L. Verdoliva. Noiseprint: A cnn-based camera model finger-
print. IEEE Transactions on Information Forensics and Security, 15:144–159,
2020.

[30] Duc-Tien Dang-Nguyen, Cecilia Pasquini, Valentina Conotter, and Giulia Boato.
Raise: A raw images dataset for digital image forensics. In Proceedings of the
6th ACM Multimedia Systems Conference, MMSys ’15, page 219–224, New York,
NY, USA, 2015. Association for Computing Machinery.

[31] Tiago José de Carvalho, Christian Riess, Elli Angelopoulou, Hélio Pedrini, and
Anderson de Rezende Rocha. Exposing digital image forgeries by illumination
color classification. IEEE Transactions on Information Forensics and Security,
8(7):1182–1194, 2013.

[32] Löıc Dehan, Wiebe Van Ranst, Patrick Vandewalle, and Toon Goedemé. Com-
plete and temporally consistent video outpainting. In 2022 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition Workshops (CVPRW), pages
686–694, 2022.

[33] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A
Large-Scale Hierarchical Image Database. In CVPR, 2009.

[34] Prafulla Dhariwal and Alex Nichol. Diffusion models beat gans on image synthe-
sis. CoRR, abs/2105.05233, 2021.

[35] Jana Dittmann. Content-fragile watermarking for image authentication. In Secu-
rity and Watermarking of Multimedia Contents III, volume 4314, pages 175–184.
International Society for Optics and Photonics, 2001.

[36] Amit Doegar, M. Dutta, and K. Gaurav. Cnn based image forgery detection
using pre-trained alexnet model. Electronic, 2019.

181

[37] Brian Dolhansky, Russ Howes, Ben Pflaum, Nicole Baram, and Cristian Ferrer.
The deepfake detection challenge (dfdc) preview dataset, 10 2019.

[38] J. Dong, W. Wang, and T. Tan. Casia image tampering detection evaluation
database. In 2013 IEEE China Summit and International Conference on Signal
and Information Processing, pages 422–426, July 2013.

[39] Chau Xuan Truong Du, Le Hoang Duong, Huynh Thanh Trung, Pham Minh
Tam, Nguyen Quoc Viet Hung, and Jun Jo. Efficient-frequency: a hybrid visual
forensic framework for facial forgery detection. In 2020 IEEE Symposium Series
on Computational Intelligence (SSCI), pages 707–712, 2020.

[40] Majed El Helou, Ruofan Zhou, Johan Barthas, and Sabine Süsstrunk. VIDIT:
Virtual image dataset for illumination transfer. arXiv preprint arXiv:2005.05460,
2020.

[41] Mohamed Elaskily, Heba Elnemr, Ahmed Sedik, Mohamed Dessouky, Ghada
El Banby, Osama Elaskily, Ashraf A. M. Khalaf, Heba Aslan, Osama Faragallah,
and Fathi Abd El-Samie. A novel deep learning framework for copy-move forgery
detection in images. Multimedia Tools and Applications, 79, 03 2020.

[42] Patrick Esser, Robin Rombach, and Björn Ommer. Taming transformers for
high-resolution image synthesis. CoRR, abs/2012.09841, 2020.

[43] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-
based algorithm for discovering clusters in large spatial databases with noise. In
Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining, KDD’96, page 226–231. AAAI Press, 1996.

[44] Kevin Eykholt, I. Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei
Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Xiaodong Song. Robust
physical-world attacks on deep learning visual classification. 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 1625–1634, 2018.

[45] H. Farid. Detecting digital forgeries using bispectral analysis. AI Lab, Mas-
sachusetts Institute of Technology, Tech. Rep. AIM-1657, 1999.

[46] Hany Farid. Image forgery detection: A survey. Signal Processing Magazine,
IEEE, 26:16 – 25, 04 2009.

[47] Hany Farid. Lighting (in)consistency of paint by text. ArXiv, abs/2207.13744,
2022.

[48] M. Fischler and R. Bolles. Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography. Commu-
nications of the ACM, 24(6):381–395, 1981.

182

[49] J. Fridrich, M. Chen, and M. Goljan. Imaging sensor noise as digital x-ray for
revealing forgeries. Proc. 9th Int. Workshop on Information Hiding, Sant Malo,
France, pages 342–358, 2007.

[50] J. Fridrich, D. Soukal, and J. Lukás. Detection of copy move forgery in digital
images. Proc. Digital Forensic Research Workshop, 2003.

[51] Penglei Gao, Xi Yang, Rui Zhang, John Y. Goulermas, Yujie Geng, Yuyao Yan,
and Kaizhu Huang. Generalized image outpainting with u-transformer. Neural
Networks, 162:1–10, 2023.

[52] Eric Goldman. The complicated story of FOSTA and Section 230. First Amend.
L. Rev., 17:279, 2018.

[53] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Y. Bengio. Generative adversarial
networks. Advances in Neural Information Processing Systems, 3, 2014.

[54] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and har-
nessing adversarial examples. arXiv 1412.6572, 12 2014.

[55] Zhiqing Guo, Gaobo Yang, Dengyong Zhang, and Ming Xia. Rethinking gradient
operator for exposing ai-enabled face forgeries. Expert Systems with Applications,
215:119361, 2023.

[56] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In
2017 IEEE International Conference on Computer Vision (ICCV), pages 2980–
2988, 2017.

[57] Geoffrey Hinton, Alex Krizhevsky, and Sida Wang. Transforming auto-encoders.
volume 6791, pages 44–51, 06 2011.

[58] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic
models. CoRR, abs/2006.11239, 2020.

[59] Yannick Hold-Geoffroy, Akshaya Athawale, and Jean-François Lalonde. Deep
sky modeling for single image outdoor lighting estimation. In 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 6920–
6928, 2019.

[60] Yannick Hold-Geoffroy, Kalyan Sunkavalli, Sunil Hadap, Emiliano Gambaretto,
and Jean-François Lalonde. Deep outdoor illumination estimation. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 2373–
2382, 2017.

[61] Berthold Horn and Brian Schunck. Determining optical flow. Artificial Intelli-
gence, 17:185–203, 08 1981.

183

[62] Lukas Hosek and Alexander Wilkie. An analytic model for full spectral sky-dome
radiance. ACM Transactions on Graphics - TOG, 31, 07 2012.

[63] Tu K Huynh, Khoa V Huynh, Thuong Le-Tien, and Sy C Nguyen. A survey
on image forgery detection techniques. In The 2015 IEEE RIVF International
Conference on Computing & Communication Technologies-Research, Innovation,
and Vision for Future (RIVF), pages 71–76. IEEE, 2015.

[64] M. K. Johnson and H. Farid. Exposing digital forgeries by detecting inconsisten-
cies in lighting. Proc. ACM Multimedia and Security Workshop, New York, NY,
pages 1–10, 2005.

[65] M. K. Johnson and H. Farid. Exposing digital forgeries through chromatic aber-
ration. Proc. ACM Multimedia and Security Workshop, Geneva, Switzerland,
pages 48–55, 2006.

[66] M. K. Johnson and H. Farid. Metric measurements on a plane from a single
image. Tech. Rep. TR2006- 579, 2006.

[67] M. K. Johnson and H. Farid. Detecting photographic composites of people. Proc.
6th Int. Workshop on Digital Watermarking, Guangzhou, China, 2007.

[68] M. K. Johnson and H. Farid. Exposing digital forgeries through specular high-
lights on the eye. Proc. 9th Int. Workshop on Information Hiding, Saint Malo,
France,, pages 311–325, 2007.

[69] Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko
Lehtinen, and Timo Aila. Alias-free generative adversarial networks. In Proc.
NeurIPS, 2021.

[70] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture
for generative adversarial networks. pages 4396–4405, 06 2019.

[71] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and
Timo Aila. Analyzing and improving the image quality of stylegan. CoRR,
abs/1912.04958, 2019.

[72] Lei Ke, Yu-Wing Tai, and Chi-Keung Tang. Occlusion-aware video object in-
painting. CoRR, abs/2108.06765, 2021.

[73] Katarzyna Koptyra and Marek R Ogiela. Imagechain—application of blockchain
technology for images. Sensors, 21(1):82, 2021.

[74] P. Korus and J. Huang. Multi-scale analysis strategies in prnu-based tampering
localization. IEEE Trans. on Information Forensics & Security, 2017.

[75] Pawe l Korus. Digital image integrity–a survey of protection and verification
techniques. Digital Signal Processing, 71:1–26, 2017.

184

[76] Pawe l Korus and Jiwu Huang. Evaluation of random field models in multi-modal
unsupervised tampering localization. In 2016 IEEE International Workshop on
Information Forensics and Security (WIFS), pages 1–6, 2016.

[77] Marek Kowalski. [accessed 16-march-2022].

[78] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute
for advanced research), 2009.

[79] Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. Imagenet classification
with deep convolutional neural networks. Neural Information Processing Systems,
25, 2012.

[80] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the
physical world. 07 2016.

[81] Jean-François Lalonde, Louis-Philippe Asselin, Julien Becirovski, Yannick Hold-
Geoffroy, Mathieu Garon, Marc-André Gardner, and Jinsong Zhang. The Laval
HDR sky database. http://sky.hdrdb.com, 2016.

[82] Jean-François Lalonde and Iain Matthews. Lighting estimation in outdoor image
collections. Proceedings - 2014 International Conference on 3D Vision, 3DV
2014, pages 131–138, 02 2015.

[83] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436–444, 2015.

[84] Yann LeCun and Corinna Cortes. MNIST handwritten digit database.
http://yann.lecun.com/exdb/mnist/, 2010. [accessed 16-march-2022].

[85] Yuezun Li, Ming-Ching Chang, and Siwei Lyu. In ictu oculi: Exposing ai created
fake videos by detecting eye blinking. pages 1–7, 12 2018.

[86] Yuezun Li and Siwei Lyu. Exposing deepfake videos by detecting face warping
artifacts, 11 2018.

[87] Yuezun Li, Xin Yang, Honggang Qi, and Siwei Lyu. Celeb-df: A large-scale
challenging dataset for deepfake forensics. pages 3204–3213, 06 2020.

[88] Xin Liao, Zihang Huang, Lin Peng, and Tong Qiao. First step towards parameters
estimation of image operator chain. Information Sciences, 575, 06 2021.

[89] Xin Liao, Kaide Li, Xinshan Zhu, and K. J. Ray Liu. Robust detection of image
operator chain with two-stream convolutional neural network. IEEE Journal of
Selected Topics in Signal Processing, 14(5):955–968, 2020.

185

http://sky.hdrdb.com

[90] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft coco: Common
objects in context. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne
Tuytelaars, editors, Computer Vision – ECCV 2014, pages 740–755, Cham, 2014.
Springer International Publishing.

[91] Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso
Setio, Francesco Ciompi, Mohsen Ghafoorian, Jeroen Awm Van Der Laak, Bram
Van Ginneken, and Clara I Sánchez. A survey on deep learning in medical image
analysis. Medical image analysis, 42:60–88, 2017.

[92] Guilin Liu, Fitsum Reda, Kevin Shih, Ting-Chun Wang, Andrew Tao, and Bryan
Catanzaro. Image inpainting for irregular holes using partial convolutions. 04
2018.

[93] Xosé López-Garćıa, Alba Silva-Rodŕıguez, Ángel-Antonio Vizoso-Garćıa, Oscar
Westlund, and João Canavilhas. Mobile journalism: Systematic literature review.
Comunicar. Media Education Research Journal, 27(1), 2019.

[94] David Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision, 60:91–, 11 2004.

[95] Chun-Shien Lu and H-YM Liao. Multipurpose watermarking for image authen-
tication and protection. IEEE Transactions on Image Processing, 10(10):1579–
1592, 2001.

[96] J. Lukás and J. Fridrich. Estimation of primary quantization matrix in double
compressed jpeg images. Proc. Digital Forensic Research Workshop, 2003.

[97] M. T. H. Majumder and A. B. M. Alim Al Islam. A tale of a deep learning
approach to image forgery detection. In 2018 5th International Conference on
Networking, Systems and Security (NSysS), pages 1–9, 2018.

[98] Francesco Marra, Diego Gragnaniello, Luisa Verdoliva, and Giovanni Poggi. A
full-image full-resolution end-to-end-trainable cnn framework for image forgery
detection. IEEE Access, PP:1–1, 07 2020.

[99] Daniel Moreira, Aparna Bharati, Joel Brogan, Allan Pinto, Michael Parowski,
Kevin W Bowyer, Patrick J Flynn, Anderson Rocha, and Walter J Scheirer.
Image provenance analysis at scale. IEEE Transactions on Image Processing,
27(12):6109–6123, 2018.

[100] G. Muzaffer and G. Ulutas. A new deep learning-based method to detection of
copy-move forgery in digital images. In 2019 Scientific Meeting on Electrical-
Electronics Biomedical Engineering and Computer Science (EBBT), pages 1–4,
2019.

186

[101] Huy Nguyen, Junichi Yamagishi, and I. Echizen. Use of a capsule network to
detect fake images and videos, 10 2019.

[102] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin,
Bob McGrew, Ilya Sutskever, and Mark Chen. GLIDE: towards photoreal-
istic image generation and editing with text-guided diffusion models. CoRR,
abs/2112.10741, 2021.

[103] Sophie J Nightingale, Kimberley A Wade, and Derrick G Watson. Can peo-
ple identify original and manipulated photos of real-world scenes? Cognitive
research: principles and implications, 2(1):1–21, 2017.

[104] Nikos Nikolaidis and Ioannis Pitas. Copyright protection of images using robust
digital signatures. In 1996 IEEE International Conference on Acoustics, Speech,
and Signal Processing Conference Proceedings, volume 4, pages 2168–2171. IEEE,
1996.

[105] M. Nilsback and A. Zisserman. Automated flower classification over a large num-
ber of classes. In 2008 Sixth Indian Conference on Computer Vision, Graphics
Image Processing, pages 722–729, 2008.

[106] Hao Ouyang, Tengfei Wang, and Qifeng Chen. Internal video inpainting by
implicit long-range propagation. CoRR, abs/2108.01912, 2021.

[107] J. Ouyang, Y. Liu, and M. Liao. Copy-move forgery detection based on deep
learning. In 2017 10th International Congress on Image and Signal Processing,
BioMedical Engineering and Informatics (CISP-BMEI), pages 1–5, 2017.

[108] Andrea Passarella. A survey on content-centric technologies for the current in-
ternet: CDN and P2P solutions. Computer Communications, 35(1):1–32, 2012.

[109] R. Perez, R. Seals, and J. Michalsky. All-weather model for sky luminance distri-
bution—preliminary configuration and validation. Solar Energy, 50(3):235–245,
1993.

[110] James Philbin, Relja Arandjelović, and Andrew Zisserman. The Oxford Buildings
Dataset. https://www.robots.ox.ac.uk/∼vgg/data/oxbuildings/, 2007. [accessed
16-march-2022].

[111] Bui Tuong Phong. Illumination for computer generated pictures. Commun.
ACM, 18(6):311–317, jun 1975.

[112] Alessandro Piva. An overview on image forensics. International Scholarly Re-
search Notices, 2013, 2013.

[113] A. C. Popescu and H. Farid. Exposing digital forgeries by detecting traces of
re-sampling. IEEE Transactions on Signal Processing, 53(2):758–767, 2005.

187

https://www.robots.ox.ac.uk/~vgg/data/oxbuildings/

[114] A.C. Popescu and H. Farid. Exposing digital forgeries by detecting duplicated
image regions. Tech. Rep. TR2004-515, 2004.

[115] A. Preetham, Peter Shirley, and Brian Smits. A practical analytic model for
daylight. Proceedings of ACM SIGGRAPH, 99:91–100, 01 1999.

[116] Q.-T. Phan, G. Boato, R. Caldelli, I. Amerini. Tracking multiple image sharing
on social networks. In IEEE International Conference on Acoustics, Speech, and
Signal Processing, 2019.

[117] Muhammad Ali Qureshi and Mohamed Deriche. A bibliography of pixel-based
blind image forgery detection techniques. Signal Processing: Image Communica-
tion, 39:46–74, 2015.

[118] N. Hema Rajini. Image forgery identification using convolution neural network.
International Journal of Recent Technology and Engineering, 8, 2019.

[119] Ravi Ramamoorthi. Modeling illumination variation with spherical harmonics.
In Face Processing: Advanced Modeling Methods, pages 385–424. 2006.

[120] Y. Rao and J. Ni. A deep learning approach to detection of splicing and copy-
move forgeries in images. In 2016 IEEE International Workshop on Information
Forensics and Security (WIFS), pages 1–6, 2016.

[121] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: To-
wards real-time object detection with region proposal networks. In C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 28. Curran Associates, Inc., 2015.

[122] Sujoy Roy and Qibin Sun. Robust hash for detecting and localizing image tam-
pering. In 2007 IEEE International Conference on Image Processing, volume 6,
pages VI–117. IEEE, 2007.

[123] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: An efficient alternative
to sift or surf. In 2011 International Conference on Computer Vision, pages
2564–2571, 2011.

[124] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein,
Alexander Berg, and Li Fei-Fei. Imagenet large scale visual recognition challenge.
International Journal of Computer Vision, 115, 09 2014.

[125] Andreas Rössler, Davide Cozzolino, Luisa Verdoliva, Christian Riess, Justus
Thies, and Matthias Nießner. Faceforensics++: Learning to detect manipulated
facial images, 01 2019.

188

[126] Gerald Schaefer and Michal Stich. UCID: an uncompressed color image database.
In Minerva M. Yeung, Rainer W. Lienhart, and Chung-Sheng Li, editors, Storage
and Retrieval Methods and Applications for Multimedia 2004, volume 5307, pages
472 – 480. International Society for Optics and Photonics, SPIE, 2003.

[127] Victor Schetinger, Manuel M Oliveira, Roberto da Silva, and Tiago J Carvalho.
Humans are easily fooled by digital images. Computers & Graphics, 68:142–151,
2017.

[128] Marc Schneider and Shih-Fu Chang. A robust content based digital signature for
image authentication. In Proceedings of 3rd IEEE International Conference on
Image Processing, volume 3, pages 227–230. IEEE, 1996.

[129] Cuihua Shen, Mona Kasra, Wenjing Pan, Grace A Bassett, Yining Malloch, and
James F O’Brien. Fake images: The effects of source, intermediary, and digital
media literacy on contextual assessment of image credibility online. New media
& society, 21(2):438–463, 2019.

[130] Dasara Shullani, Marco Fontani, Massimo Iuliani, Omar Al Shaya, and Alessan-
dro Piva. Vision: a video and image dataset for source identification. EURASIP
Journal on Information Security, 2017(1):15, 2017. TY-JOUR.

[131] Hassan A. Sial, Ramon Baldrich, Maŕıa Vanrell, and Dimitris Samaras. Light
direction and color estimation from single image with deep regression. CoRR,
abs/2009.08941, 2020.

[132] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv 1409.1556, 2014.

[133] Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Gan-
guli. Deep unsupervised learning using nonequilibrium thermodynamics. CoRR,
abs/1503.03585, 2015.

[134] Dominic Spohr. Fake news and ideological polarization: Filter bubbles and se-
lective exposure on social media. Business Information Review, 34(3):150–160,
2017.

[135] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. Going deeper with convolutions. The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1–9, 06 2015.

[136] R. Thakur and R. Rohilla. Copy-move forgery detection using residuals and
convolutional neural network framework: A novel approach. In 2019 2nd In-
ternational Conference on Power Energy, Environment and Intelligent Control
(PEEIC), pages 561–564, 2019.

189

[137] Justus Thies, Michael Zollhöfer, and Matthias Nießner. Deferred neural ren-
dering: Image synthesis using neural textures. ACM Transactions on Graphics,
38:1–12, 07 2019.

[138] Justus Thies, Michael Zollhöfer, Marc Stamminger, Christian Theobalt, and
Matthias Nießner. Face2face: Real-time face capture and reenactment of rgb
videos. Communications of the ACM, 62:96–104, 12 2018.

[139] D. Tralic, I. Zupancic, S. Grgic, and M. Grgic. Comofod — new database for
copy-move forgery detection. In Proceedings ELMAR-2013, pages 49–54, 2013.

[140] Various. Columbia image splicing detection evaluation dataset - list of photog-
raphers, 2004. [accessed 16-march-2022].

[141] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
CoRR, abs/1706.03762, 2017.

[142] Luisa Verdoliva. Media forensics and deepfakes: An overview. IEEE Journal of
Selected Topics in Signal Processing, PP:1–1, 06 2020.

[143] Nor Bakiah Abd Warif, Ainuddin Wahid Abdul Wahab, Mohd Yamani Idna Idris,
Roziana Ramli, Rosli Salleh, Shahaboddin Shamshirband, and Kim-Kwang Ray-
mond Choo. Copy-move forgery detection: Survey, challenges and future direc-
tions. Journal of Network and Computer Applications, 75:259 – 278, 2016.

[144] Zbigniew Wojna, Vittorio Ferrari, Sergio Guadarrama, Nathan Silberman, Liang-
Chieh Chen, Alireza Fathi, and Jasper Uijlings. The devil is in the decoder. In
British Machine Vision Conference (BMVC), pages 1–13, 2017.

[145] Y. Wu, W. AbdAlmageed, and P. Natarajan. Mantra-net: Manipulation tracing
network for detection and localization of image forgeries with anomalous features.
In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 9535–9544, 2019.

[146] Yue Wu, Wael Abd-Almageed, and Prem Natarajan. Busternet: Detecting copy-
move image forgery with source/target localization. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages 168–184, 2018.

[147] Jianxiong Xiao, Krista A. Ehinger, Aude Oliva, and Antonio Torralba. Rec-
ognizing scene viewpoint using panoramic place representation. In 2012 IEEE
Conference on Computer Vision and Pattern Recognition, pages 2695–2702, 2012.

[148] Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. Lsun:
Construction of a large-scale image dataset using deep learning with humans in
the loop. arXiv preprint arXiv:1506.03365, 2015.

190

[149] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S. Huang.
Free-form image inpainting with gated convolution. CoRR, abs/1806.03589, 2018.

[150] Peipeng Yu, Jianwei Fei, Zhihua Xia, Zhili Zhou, and Jian Weng. Improving gen-
eralization by commonality learning in face forgery detection. IEEE Transactions
on Information Forensics and Security, 17:547–558, 2022.

[151] Ye Yu and William AP Smith. Inverserendernet: Learning single image inverse
rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2019.

[152] Jinsong Zhang and Jean-François Lalonde. Learning high dynamic range from
outdoor panoramas. 2017 IEEE International Conference on Computer Vision
(ICCV), pages 4529–4538, 2017.

[153] Jinsong Zhang, Kalyan Sunkavalli, Yannick Hold-Geoffroy, Sunil Hadap,
Jonathan Eisenman, and Jean-François Lalonde. All-weather deep outdoor light-
ing estimation. In 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10150–10158, 2019.

[154] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. Beyond
a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE
Transactions on Image Processing, 26(7):3142–3155, 2017.

[155] Qingchen Zhang, Laurence T Yang, Zhikui Chen, and Peng Li. A survey on deep
learning for big data. Information Fusion, 42:146–157, 2018.

[156] Y. Zhang, Jonathan Goh, Lei Lei Win, and Vrizlynn L. L. Thing. Image region
forgery detection: A deep learning approach. In SG-CRC, pages 1–11, 2016.

[157] Peng Zhou, Ning Yu, Zuxuan Wu, Larry S. Davis, Abhinav Shrivastava, and
Ser-Nam Lim. Deep video inpainting detection. CoRR, abs/2101.11080, 2021.

191

Appendix

SCALE INVARIANT FEATURE TRANSFORM (SIFT)

The SIFT method, introduced in 2004, significantly influenced the field of im-

age processing, especially in applications such as image matching and retrieval. This

method extracts a set of key-points from a given image, and for each one of these, it

generates a descriptor vector (see Fig. A.1). This algorithm has four major stages:

scale-space extrema detection, keypoint localization, orientation assignment, and key-

point descriptors computation.

A.1 Scale-space extrema detection

Key-points are regions in an image with an abrupt change in intensity. It is

possible to find keypoints using the second-order derivatives of images and finding

zero-crossings on them (Laplacian Filtering). However, this approach is highly noise-

sensitive; hence, the image is first smoothed via Gaussian filtering before applying the

Laplacian. Laplacian of Gaussian’s (LoG) response is highly dependent on the scale

(σ) of the Gaussian filter used, as shown on A.2.

Hence, a scale-space volume, obtained by convolving the image with different

values for scale (σ) of the Gaussian filter is built to find all the key-points in this 3D

volume, with x, y, and σ as independent variables, where x and y are the horizontal

and vertical pixel coordinates, respectively.

In addition, LoG can be approximated by a difference of two Gaussian filters

with different scales, as shown in Eq. A.1.

G(x, y, σ)−G(x, y, kσ) ≈ (k − 1)σ2∇2G (A.1)

192

SIFT

128

N

i

Descriptors

i-th descriptor is a local
representation of

keypoint i

Figure A.1: Descriptors of key points extracted from an image.

This blob has same
size of 𝜎

Peak of LoG
response

Response of LoG to blob at 𝜎 = 1

Figure A.2: Laplacian of Gaussian’s response to blobs with different scales at σ = 1.

193

Halving resolution for each "ocatve"

G(x,y,σ), Scale-Space Volume

Halving resolution for each "ocatve"

D(x,y,σ), Difference of Gaussians

Figure A.3: Left: Creating scale-spaces for each octave. Right: The process of calcu-
lating DoGs.

Where G(x, y, σ) and G(x, y, kσ) are the Gaussian filters with scales of σ and kσ

respectively, k is a constant factor, and σ2∇2G is the scale-normalized Laplacian of

Gaussian.

For each scale of the Gaussian filter, several octaves are created by halving the

resolution in each step. Fig. A.3 shows the process of creating scale-spaces for each

octave and calculating differences of Gaussians(DoG).

The maxima and minima are detected in this DoG volume by comparing each

pixel to its 26 neighbors in 3×3 regions at the current and adjacent scales. If the value

of the current pixel is larger or smaller than all of its neighbors, it is selected as a local

extrema location (see A.4.) The factor (k − 1) in eq. A.1 is a constant for all scales

and therefore does not influence extrema locations.

A.2 Key-point localization

After identifying candidate key-points as extrema in the DoG space, a further

localization step is performed, in which the position of the key-points is refined to

194

Figure A.4: Finding maxima and minima in DoGs for each pixel compared to its 26
neighbors.

achieve a sub-pixel accuracy.

Let Xi = [xi, yi, σi]
T be one of the extrema in the DoG volume. A local contin-

uous approximation of the DoG volume (which is discrete) is now computed by fitting

a polynomial function of order 2 to the neighborhood of Xi. This can be done by using

the Taylor series expansion:

D̃(X) = D(Xi) +∇D
∣∣
Xi

(X−Xi) +
1

2
(X−Xi)

TH(D)
∣∣
Xi

(X−Xi) (A.2)

where D is used to denote the discrete DoG function. The gradient and the

Hessian matrix H(D) are approximated by using the differences of adjacent points.

The precise key-point location can now be determined at sub-pixel accuracy by

finding the minima/maxima of the continuous function D̃. As this function is parabolic,

the maxima/minima can be found simply by setting ∇D̂(X) = 0, yielding the closed

form solution:

X̂i = −H(D)−1∇D + Xi (A.3)

195

A.3 Orientation assignment

An orientation is assigned to each detected key-point, and the associated de-

scriptor is computed relative to this orientation to make the descriptor invariant to

rotations. For a given key-point X̂i = [xi, yi, σi]
T , we select the plane G(x, y, σ) with

closest σ to σi, then the magnitude m(x, y) and angle θ(x, y) for every (x, y) in a

neighborhood region of X̂i are calculated as follows:

m(x, y) =
√

(G(x + 1, y)−G(x− 1, y))2 + (G(x, y + 1)−G(x, y − 1))2 (A.4)

θ(x, y) = tan−1 G(x, y + 1)−G(x, y − 1)

G(x + 1, y)−G(x− 1, y)
(A.5)

Using m and θ, an orientation histogram with 36 bins is built to describe the

main orientation around the key-point x̂. Note that, each entry of the histogram is

weighted by the corresponding magnitude m. Finally, a local interpolation around

the peak of the histogram is performed and its maximum location is assigned as the

orientation of x̂i. The procedure is shown in fig. A.5.

A.4 Key-point descriptors computation

The SIFT algorithm’s last stage consists of assigning a fixed-size descriptor vec-

tor to each key-point. This vector is a compact feature that describes the neighborhood

of the considered key-point.

For each key-point X̂i the corresponding descriptor is built as follows:

1. A 16× 16 pixel region around X̂i is considered.

2. For each 4 × 4 sub-block the orientation histogram with 8 possible directions is

built.

3. Each histogram is circular-shifted to match the key-point orientation (sec. A.3).

In this way, the orientation invariance is achieved.

4. The descriptor is built by the concatenation of the 16 × 8 = 128 bins values.

196

0-10 10-20 20-30 350-360

Figure A.5: Orientation histogram computation.

197

	Table of Contents
	List of Tables
	List of Figures
	Abstract italiano
	Abstract
	1 Introduction
	1.1 Image forgery detection applications
	1.2 Image forgery types
	1.2.1 Copy-move
	1.2.2 Splicing
	1.2.3 Inpainting
	1.2.4 DeepFake
	1.2.5 CGI-generated images/videos
	1.2.6 GAN-based face synthesis
	1.2.7 Diffusion models

	1.3 Thesis organization

	2 Deep learning based forgery detection methods - a performance comparison
	2.1 Traditional passive forgery detection methods
	2.1.1 Pixel based
	2.1.2 Format based
	2.1.3 Camera based
	2.1.4 Lighting based
	2.1.5 Geometry based

	2.2 Deep Learning based methods
	2.3 Datasets description
	2.3.1 CASIA v1.0 (CASIA1)
	2.3.2 CASIA v2.0 (CASIA2)
	2.3.3 DVMM
	2.3.4 MICC-F220
	2.3.5 MICC-F600
	2.3.6 MICC-F2000
	2.3.7 SATs-130
	2.3.8 CMFD
	2.3.9 CoMoFoD
	2.3.10 DS0-1
	2.3.11 Korus
	2.3.12 DFDC (DeepFake Detection Challenge on Kaggle)
	2.3.13 FaceForensic++
	2.3.14 Celeb-DF
	2.3.15 TrueFace
	2.3.16 VIPCup2022 dataset
	2.3.17 V-SMUD and R-SMUD

	2.4 Evaluation metrics
	2.5 Copy-move specific methods
	2.5.1 R. Agarwal et al.
	2.5.2 Y. Abdalla et al.
	2.5.3 Y. Wu et al.
	2.5.4 M. Elaskily et al.
	2.5.5 J. Ouyang et al.
	2.5.6 Amit Doegara et al.

	2.6 Copy-move and splicing methods
	2.6.1 Cozzolino and Verdoliva
	2.6.2 Y. Zhang et al.
	2.6.3 N. H. Rajini
	2.6.4 F.Marra et al.
	2.6.5 Y. Rao et al.
	2.6.6 M. T. H. Majumder et al.
	2.6.7 R. Thakur et al.

	2.7 DeepFake methods
	2.7.1 A. Rössler et al.
	2.7.2 Huy H. Nguyen et al.
	2.7.3 Y. Li et al.

	2.8 Performance comparison
	2.8.1 Splicing and copy-move methods
	2.8.1.1 Copy-move detection methods
	2.8.1.2 Splicing and copy-move detection methods
	2.8.1.3 DeepFake detection methods

	2.9 Discussion

	3 Copy-move Detection using SIFT keypoints matching
	3.1 Copy-move detection method
	3.1.1 Descriptors matching
	3.1.2 Filtering with Lowe's ratio
	3.1.3 DBSCAN based filtering

	3.2 Experimental results
	3.2.1 Future work

	4 Light direction estimation
	4.1 Related work
	4.1.1 Sky and sun models
	4.1.2 Light estimation approaches
	4.1.3 Benchmark datasets

	4.2 Light prediction model
	4.2.1 Normals estimation net
	4.2.2 Light estimation net
	4.2.3 Physical Illumination model

	4.3 Dataset generation methods
	4.3.1 Synthetic Dataset
	4.3.2 Real dataset
	4.3.2.1 Input panoramas
	4.3.2.2 Sun position estimation
	4.3.2.3 Limited FOV extraction from Panorama
	4.3.2.4 Implementation

	4.4 Experimental results
	4.4.1 Network Training
	4.4.2 Notation and metrics
	4.4.3 Results on RealOut
	4.4.4 Results on SynthOut
	4.4.5 Results on other CG datasets
	4.4.6 Ablation Study

	4.5 Discussion

	5 Light-based forgery detection
	5.1 Method architecture
	5.2 Experiments
	5.2.1 Synthetic splicing dataset
	5.2.2 Evaluation on benchmark datasets

	5.3 InverseRenderNet - based approach
	5.3.1 Differentiable forward rendering
	5.3.2 Proposed approach
	5.3.2.1 Feature extraction
	5.3.2.2 Binary classifier

	5.4 Experiments
	5.4.1 Results evaluation on Synthetic dataset
	5.4.2 Results evaluation on Benchmark dataset

	5.5 Discussion

	6 Ensemble Forgery detection approach
	6.1 Method overview
	6.1.1 Base2 method
	6.1.2 FusionForgery classifier
	6.1.3 Region coherence analysis
	6.1.4 Source region retrieval
	6.1.5 Splicing detection

	6.2 Dataset generation
	6.3 Experimental results
	6.3.1 Binary forgery classification and localization performance
	6.3.1.1 Ablation analysis

	6.3.2 Splicing detection performance
	6.3.3 Source region localization performance

	6.4 Discussion

	Conclusions
	Bibliography
	 Scale Invariant Feature Transform (SIFT)
	A.1 Scale-space extrema detection
	A.2 Key-point localization
	A.3 Orientation assignment
	A.4 Key-point descriptors computation

