Let P be a non-degenerate polar space. In [6], we introduced an intrinsic parameter of P, called the anisotropic gap, defined as the least upper bound of the lengths of the well- ordered chains of subspaces of P containing a frame; when P is orthogonal, we also defined two other parameters of P, called the elliptic and parabolic gap, both related to the universal embedding of P. In this paper, assuming that P is an orthogonal polar space, we prove that the elliptic and parabolic gaps can be described as intrinsic invariants of P without directly appealing to the embedding.
On orthogonal polar spaces
Giuzzi, Luca
2023-01-01
Abstract
Let P be a non-degenerate polar space. In [6], we introduced an intrinsic parameter of P, called the anisotropic gap, defined as the least upper bound of the lengths of the well- ordered chains of subspaces of P containing a frame; when P is orthogonal, we also defined two other parameters of P, called the elliptic and parabolic gap, both related to the universal embedding of P. In this paper, assuming that P is an orthogonal polar space, we prove that the elliptic and parabolic gaps can be described as intrinsic invariants of P without directly appealing to the embedding.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0024379523002380-main.pdf
Open Access dal 28/06/2024
Tipologia:
Full Text
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
532.71 kB
Formato
Adobe PDF
|
532.71 kB | Adobe PDF | Visualizza/Apri |
ep-corank-revised.pdf
accesso aperto
Descrizione: preprint
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
350.48 kB
Formato
Adobe PDF
|
350.48 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.