Adding steel fibers to concrete improves the post-cracking tensile strength of the composite material due to fibers bridging the cracks. The residual performance of the material is influenced by fiber type, content and orientation with respect to the crack plane. The latter is a main issue in fiber-reinforced concrete elements, since it significantly influences the structural behavior. The aim of this research is to develop a tailor-made composite material and casting method to orient fibers in order to optimize the performance of the material for structural applications. To this aim, a mechanized concreting device that induces such preferred fiber orientation is designed and fabricated. It uses vibration and a series of narrow channels to guide and orient fibers. A composite with oriented fibers is produced using a hybrid system of macro and micro fibers and high-performance concrete. From the same concrete batch, specimens are cast both with and without the fiber orientation device, obtaining different levels of fiber orientation. Three-point bending tests are performed to measure and compare the residual tensile strength capacities with standard specimens cast according to EN 14651. Elements with favorable fiber orientation show a significant increase in residual tensile strength with respect to the standard beams. Finally, computed tomography and an electromagnetic induction method are employed to better assess the orientation and distribution of fibers in the beams. Their results are in good agreement and enable to link the residual tensile strength parameters with fiber orientation.
Steered fiber orientation: correlating orientation and residual tensile strength parameters of SFRC
Medeghini F.;Tiberti G.;Plizzari G. A.;Mark P.
2022-01-01
Abstract
Adding steel fibers to concrete improves the post-cracking tensile strength of the composite material due to fibers bridging the cracks. The residual performance of the material is influenced by fiber type, content and orientation with respect to the crack plane. The latter is a main issue in fiber-reinforced concrete elements, since it significantly influences the structural behavior. The aim of this research is to develop a tailor-made composite material and casting method to orient fibers in order to optimize the performance of the material for structural applications. To this aim, a mechanized concreting device that induces such preferred fiber orientation is designed and fabricated. It uses vibration and a series of narrow channels to guide and orient fibers. A composite with oriented fibers is produced using a hybrid system of macro and micro fibers and high-performance concrete. From the same concrete batch, specimens are cast both with and without the fiber orientation device, obtaining different levels of fiber orientation. Three-point bending tests are performed to measure and compare the residual tensile strength capacities with standard specimens cast according to EN 14651. Elements with favorable fiber orientation show a significant increase in residual tensile strength with respect to the standard beams. Finally, computed tomography and an electromagnetic induction method are employed to better assess the orientation and distribution of fibers in the beams. Their results are in good agreement and enable to link the residual tensile strength parameters with fiber orientation.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.