As most new medications, Cabotegravir (CAB) was recently approved as an antiretroviral treatment of HIV infection without in-depth safety information on in utero exposure. Although no developmental toxicity in rats and rabbits was reported, recent studies demonstrated that CAB decreases pluripotency of human embryonic stem cells. CAB exposure effects during development were assessed in zebrafish embryos by the Fish Embryo Toxicity test after exposure at subtherapeutic concentrations up to 25x the human C-max. Larvae behavior was assessed by the light-dark locomotion test. The expression of factors involved in neurogenesis was evaluated by whole-mount in situ hybridization. CAB did not cause gross morphological defects at low doses, although pericardial edema, uninflated swim bladder, decreased heartbeats, growth delay, and decreased hatching rate were observed at the highest concentrations. Decreased locomotion was observed even at the subtherapeutic dose, suggesting alterations of nervous system integrity. This hypothesis was supported by the observation of decreased expression of crucial factors involved in early neuronal differentiation in diencephalic and telencephalic dopaminergic areas, midbrain/hindbrain boundary, and craniofacial ganglia. These findings support CAB effects on neurogenesis in zebrafish embryos and suggest long-term follow-up of exposed infants to provide data on drug safety during pregnancy.

Cabotegravir Exposure of Zebrafish (Danio rerio) Embryos Impacts on Neurodevelopment and Behavior

Zizioli, Daniela;Zanella, Isabella
;
Mignani, Luca;Degli Antoni, Melania;Castelli, Francesco;Quiros-Roldan, Eugenia
2023-01-01

Abstract

As most new medications, Cabotegravir (CAB) was recently approved as an antiretroviral treatment of HIV infection without in-depth safety information on in utero exposure. Although no developmental toxicity in rats and rabbits was reported, recent studies demonstrated that CAB decreases pluripotency of human embryonic stem cells. CAB exposure effects during development were assessed in zebrafish embryos by the Fish Embryo Toxicity test after exposure at subtherapeutic concentrations up to 25x the human C-max. Larvae behavior was assessed by the light-dark locomotion test. The expression of factors involved in neurogenesis was evaluated by whole-mount in situ hybridization. CAB did not cause gross morphological defects at low doses, although pericardial edema, uninflated swim bladder, decreased heartbeats, growth delay, and decreased hatching rate were observed at the highest concentrations. Decreased locomotion was observed even at the subtherapeutic dose, suggesting alterations of nervous system integrity. This hypothesis was supported by the observation of decreased expression of crucial factors involved in early neuronal differentiation in diencephalic and telencephalic dopaminergic areas, midbrain/hindbrain boundary, and craniofacial ganglia. These findings support CAB effects on neurogenesis in zebrafish embryos and suggest long-term follow-up of exposed infants to provide data on drug safety during pregnancy.
File in questo prodotto:
File Dimensione Formato  
ijms-24-01994.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: PUBBLICO - Creative Commons 4.0
Dimensione 4.63 MB
Formato Adobe PDF
4.63 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/573449
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact