The study of phenomena that evolve over time is often conducted through their modelling as dynamic systems, whose mathematical formulation generally requires the resolution of systems of differential equations with initial conditions. Solving the governing equations of a physical phenomenon means determining its evolution over time starting from a set of initial conditions; for example, considering mechanical systems, through a mathematical law that determines its position and speed as functions of time. However, the equations governing motion cannot be often solved analytically and therefore, numerical integration techniques are used in order to obtain an accurate approximation of the solution. Treating the problem of studying a physical system from a variational point of view may be a different approach, motivated by the Lagrangian formulation of classical mechanics. The idea of replacing a given problem with an equivalent one in variational form is certainly not new: the interest in this formulation is in fact justified by the validity of the so-called direct methods of the calculation of variations. These methods are valid both for a qualitative study of the problem (verification of existence and uniqueness of the solution, its regularity, etc.), and for a quantitative study, namely from a numerical point of view (evaluation of convergence, estimation of the error of the approximate solution). In this thesis, evolution problems of engineering interest are analyzed, formulated in a variational way. Firstly, the linear viscoelastic problem is numerically solved using three different variational formulation, such as Gurtin's variational formulation, Split Gurtin formulation and the Huet formulation. The Finite Element Method is used for the space discretization and the Ritz method is used for the time discretization. Then, the heat conduction problem is taken into account. Two formulations are considered: the first one based on a convolutive bilinear form, the second one based on a biconvolutive bilinear form. Several numerical examples highlight the goodness of the two different approaches. Next, the problem of the determination of upper and lower bounds for the mechanical properties of composite materials, consisting of phases having viscoelastic constitutive laws, is addressed. Subsequently, the problem of the evolution of a fracture is analyzed both in an elastic medium and in a viscoelastic medium. In the first case, an extremal formulation, similar to that of Capurso and Maier, is proposed, valid in the elastoplastic field. Finally, the dynamical stability of plane systems with just one lumped mass, subjected to follower forces, is considered.
Lo studio di fenomeni che evolvono nel tempo è spesso condotto attraverso la loro modellazione come sistemi dinamici, la cui formulazione matematica, in genere, richiede la risoluzione di sistemi di equazioni differenziali a condizioni iniziali. Risolvere le equazioni che governano un fenomeno fisico evolutivo significa determinarne l'evoluzione nel tempo a partire da un insieme di condizioni iniziali; ad esempio, considerando i sistemi meccanici, attraverso una legge matematica che ne determina la posizione e la velocità in funzione del tempo. Tuttavia, le equazioni che governano il moto spesso non possono essere risolte analiticamente e quindi vengono utilizzate tecniche di integrazione numerica per ottenere un'approssimazione accurata della soluzione. Trattare il problema dello studio di un sistema fisico da un punto di vista variazionale può essere un approccio diverso, motivato dalla formulazione Lagrangiana della meccanica classica. L'idea di sostituire un dato problema con uno equivalente in forma variazionale non è certo nuova: l'interesse per questa formulazione è infatti giustificato dalla validità dei cosiddetti metodi diretti del calcolo delle variazioni. Questi metodi sono validi sia per uno studio qualitativo del problema (verifica dell'esistenza e unicità della soluzione, la sua regolarità, ecc.), sia per uno studio quantitativo, cioè da un punto di vista numerico (valutazione della convergenza, stima dell'errore della soluzione approssimata). In questa tesi vengono analizzati problemi evolutivi di interesse ingegneristico, formulati per via variazionale. In primo luogo, il problema viscoelastico lineare viene risolto numericamente utilizzando tre diverse formulazioni variazionali: la formulazione di Gurtin, la formulazione di Gurtin splittata e la formulazione di Huet. Il metodo degli elementi finiti viene utilizzato per la discretizzazione spaziale e il metodo Ritz viene utilizzato per la discretizzazione temporale. Successivamente, si prende in considerazione il problema della conduzione del calore. Vengono considerate due formulazioni: la prima basata su una forma bilineare convolutiva, la seconda su una forma bilineare biconvolutiva. Numerosi esperimenti numerici mettono in luce la bontà dei due diversi approcci. Viene poi affrontato il tema della determinazione di upper e lower bounds per le proprietà meccaniche di materiali compositi costituiti da fasi aventi legami costitutivi viscoelastici. Successivamente viene analizzato il problema dell'evoluzione di una frattura sia in un mezzo elastico sia in un mezzo viscoelastico. Nel primo caso viene proposta una formulazione estremale analoga a quella di Capurso e Maier, valida in ambito elastoplastico. Infine, viene considerata la stabilità dinamica di sistemi piani con una sola massa concentrata e soggetti a forze follower.
Variational principles for evolution problems / Levi, Francesca. - (2023 Mar 06).
Variational principles for evolution problems
LEVI, FRANCESCA
2023-03-06
Abstract
The study of phenomena that evolve over time is often conducted through their modelling as dynamic systems, whose mathematical formulation generally requires the resolution of systems of differential equations with initial conditions. Solving the governing equations of a physical phenomenon means determining its evolution over time starting from a set of initial conditions; for example, considering mechanical systems, through a mathematical law that determines its position and speed as functions of time. However, the equations governing motion cannot be often solved analytically and therefore, numerical integration techniques are used in order to obtain an accurate approximation of the solution. Treating the problem of studying a physical system from a variational point of view may be a different approach, motivated by the Lagrangian formulation of classical mechanics. The idea of replacing a given problem with an equivalent one in variational form is certainly not new: the interest in this formulation is in fact justified by the validity of the so-called direct methods of the calculation of variations. These methods are valid both for a qualitative study of the problem (verification of existence and uniqueness of the solution, its regularity, etc.), and for a quantitative study, namely from a numerical point of view (evaluation of convergence, estimation of the error of the approximate solution). In this thesis, evolution problems of engineering interest are analyzed, formulated in a variational way. Firstly, the linear viscoelastic problem is numerically solved using three different variational formulation, such as Gurtin's variational formulation, Split Gurtin formulation and the Huet formulation. The Finite Element Method is used for the space discretization and the Ritz method is used for the time discretization. Then, the heat conduction problem is taken into account. Two formulations are considered: the first one based on a convolutive bilinear form, the second one based on a biconvolutive bilinear form. Several numerical examples highlight the goodness of the two different approaches. Next, the problem of the determination of upper and lower bounds for the mechanical properties of composite materials, consisting of phases having viscoelastic constitutive laws, is addressed. Subsequently, the problem of the evolution of a fracture is analyzed both in an elastic medium and in a viscoelastic medium. In the first case, an extremal formulation, similar to that of Capurso and Maier, is proposed, valid in the elastoplastic field. Finally, the dynamical stability of plane systems with just one lumped mass, subjected to follower forces, is considered.File | Dimensione | Formato | |
---|---|---|---|
Tesi_LEVI.pdf
accesso aperto
Descrizione: TESI
Tipologia:
Tesi di dottorato
Dimensione
31.16 MB
Formato
Adobe PDF
|
31.16 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.