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Abstract

The study of phenomena that evolve over time is often conducted through their modelling as
dynamic systems, whose mathematical formulation generally requires the resolution of systems
of differential equations with initial conditions.
Solving the governing equations of a physical phenomenon means determining its evolution
over time starting from a set of initial conditions; for example, considering mechanical systems,
through a mathematical law that determines its position and speed as functions of time.
However, the equations governing motion cannot be often solved analytically and therefore,
numerical integration techniques are used in order to obtain an accurate approximation of the
solution.
Treating the problem of studying a physical system from a variational point of view may be a
different approach, motivated by the Lagrangian formulation of classical mechanics. The idea
of replacing a given problem with an equivalent one in variational form is certainly not new:
the interest in this formulation is in fact justified by the validity of the so-called direct methods
of the calculation of variations. These methods are valid both for a qualitative study of the
problem (verification of existence and uniqueness of the solution, its regularity, etc.), and for a
quantitative study, namely from a numerical point of view (evaluation of convergence, estima-
tion of the error of the approximate solution).
In this thesis, evolution problems of engineering interest are analysed, formulated in a varia-
tional way. Firstly, the linear viscoelastic problem is numerically solved using three different
variational formulation, such as Gurtin’s variational formulation, Split Gurtin formulation and
the Huet formulation.
The Finite Element Method is used for the space discretization and the Ritz method is used
for the time discretization.
Then, the heat conduction problem is taken into account. Two formulations are considered: the
first one based on a convolutive bilinear form, the second one based on a biconvolutive bilinear
form. Several numerical examples highlight the goodness of the two different approaches.
Next, the problem of the determination of upper and lower bounds for the mechanical properties
of composite materials, consisting of phases having viscoelastic constitutive laws, is addressed.
Subsequently, the problem of the evolution of a fracture is analyzed both in an elastic medium
and in a viscoelastic medium. In the first case, an extremal formulation, similar to that of
Capurso and Maier, is proposed, valid in the elastoplastic field.
Finally, the dynamical stability of plane systems with just one lumped mass, subjected to
follower forces, is considered.
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Sommario

Lo studio di fenomeni che evolvono nel tempo è spesso condotto attraverso la loro modellazione
come sistemi dinamici, la cui formulazione matematica, in genere, richiede la risoluzione di
sistemi di equazioni differenziali a condizioni iniziali. Risolvere le equazioni che governano un
fenomeno fisico evolutivo significa determinarne l’evoluzione nel tempo a partire da un insieme
di condizioni iniziali; ad esempio, considerando i sistemi meccanici, attraverso una legge matem-
atica che ne determina la posizione e la velocità in funzione del tempo.
Tuttavia, le equazioni che governano il moto spesso non possono essere risolte analiticamente
e quindi vengono utilizzate tecniche di integrazione numerica per ottenere un’approssimazione
accurata della soluzione.
Trattare il problema dello studio di un sistema fisico da un punto di vista variazionale può essere
un approccio diverso, motivato dalla formulazione Lagrangiana della meccanica classica. L’idea
di sostituire un dato problema con uno equivalente in forma variazionale non è certo nuova:
l’interesse per questa formulazione è infatti giustificato dalla validità dei cosiddetti metodi di-
retti del calcolo delle variazioni. Questi metodi sono validi sia per uno studio qualitativo del
problema (verifica dell’esistenza e unicità della soluzione, la sua regolarità, ecc.), sia per uno
studio quantitativo, cioè da un punto di vista numerico (valutazione della convergenza, stima
dell’errore della soluzione approssimata).
In questa tesi vengono analizzati problemi evolutivi di interesse ingegneristico, formulati per
via variazionale. In primo luogo, il problema viscoelastico lineare viene risolto numericamente
utilizzando tre diverse formulazioni variazionali: la formulazione di Gurtin, la formulazione di
Gurtin “splittata”e la formulazione di Huet.
Il metodo degli elementi finiti viene utilizzato per la discretizzazione spaziale e il metodo Ritz
viene utilizzato per la discretizzazione temporale.
Successivamente, si prende in considerazione il problema della conduzione del calore. Vengono
considerate due formulazioni: la prima basata su una forma bilineare convolutiva, la seconda su
una forma bilineare biconvolutiva. Numerosi esperimenti numerici mettono in luce la bontà dei
due diversi approcci.
Viene poi affrontato il tema della determinazione di upper e lower bounds per le proprietà meccaniche
di materiali compositi costituiti da fasi aventi legami costitutivi viscoelastici.
Successivamente viene analizzato il problema dell’evoluzione di una frattura sia in un mezzo
elastico sia in un mezzo viscoelastico. Nel primo caso viene proposta una formulazione es-
tremale analoga a quella di Capurso e Maier, valida in ambito elastoplastico.
Infine, viene considerata la stabilità dinamica di sistemi piani con una sola massa concentrata
e soggetti a forze follower.
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Chapter 1

Introduction

The study of phenomena that evolve over time, like the swing of a pendulum, the motion of
celestial bodies, molecular dynamics, etc., is often conducted through their modelling as dy-
namic systems, whose mathematical formulation generally requires the resolution of systems
of differential equations with initial conditions. Solving the governing equations of a physical
phenomenon means determining its evolution over time starting from a set of initial conditions;
for example, considering mechanical systems, through a mathematical law that determines its
position and speed as a function of time.
However, the equations governing motion cannot be often solved analytically and therefore,
numerical integration techniques are used in order to obtain an accurate approximation of the
solution.
Treating the problem of studying a physical system from a variational point of view may be a
different approach, motivated by the Lagrangian formulation of classical mechanics. The idea
of replacing a given problem with an equivalent one in variational form is certainly not new: the
interest in this formulation is in fact justified by the validity of the so-called direct methods of
the calculus of variations. These methods are valid both for a qualitative study of the problem
(study of existence and uniqueness of the solution, its regularity, etc.), and for a quantitative
study, namely from a numerical point of view (evaluation of convergence, estimation of the
error of the approximate solution). The first results of the calculus of variations concerned
analytical mechanics and were subsequently extended to elastodynamics and field theory, as
reported in several texts (Levi-Civita and Amaldi, (1927); Whittaker, (1917); Lanczos, (1970)).
In particular, due to their importance, it is appropriate to recall Gauss’s principle of least con-
straint and Hertz’s principle of least curvature (which is a geometric interpretation of Gauss’s
principle in the case of zero active forces and time-independent constraints).
Another classic variational principle of mechanics is Hamilton’s principle, whose importance
was recognized after World War II by the use Feynman (1948) and Dirac (1930), in the field
of quantum mechanics, made of it. However, all applications and extensions of Hamilton’s law
are not strictly variational formulations, since the equations of motion do not derive from the
stationarity or from the minimum of a functional, but can only be considered quasi-variational
(or weak) formulations.
In fact, Hamilton’s principle is a true variational principle but, generally, it cannot be used to
find solutions to the dynamic problem. The reason for this lies in the fact that, in order to
find the stationary value of the Hamilton functional, it is necessary to consider functions that
vanish both at the initial instant and at the final instant of a given time interval. Since, for
a time-dependent field, the field at the final time is usually unknown, it is not possible to use
the direct methods of variational calculus. In fact, the functions used in these methods must
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satisfy the final condition which is known a priori. Furthermore, Hamilton’s principle is not,
in general, a minimum principle and it transforms the real problem (with initial conditions) in
another with boundary conditions that does not always have a solution and the solution may
not be unique. Despite all these criticisms, Hamilton’s principle had considerable success in
theoretical physics, also because attention was often addressed to differential equations, while
the initial conditions were neglected.

In this thesis, evolution problems of engineering interest are presented, formulated in a varia-
tional way. In each Chapter a problem is introduced and analysed.

1.1 Thesis outline

Chapter 2 takes into account classical variational formulations for the linear viscoelastic prob-
lem (Section 2.1), such as Gurtin’s variational formulation (1963), Split Gurtin formulation
(Carini and Mattei, 2015) and the Huet (1992) formulation.
Firstly, the linear viscoelastic problem and its governing equations are introduced (Section 2.2).
Properties regarding the relaxation kernel and the creep kernel are described. Then, a brief
reminder to the convolutive bilinear form, which the formulations are based on, is made.
Gurtin’s formulation is derived from the method of the adjoint equation, but it proves to be
only a stationary principle.
Performing a decomposition of the integration time interval into two subintervals of the same
amplitude leads to the definition of the Split Gurtin formulation. From the positiveness of the
operator defined over the first subinterval, a minimum-stationary principle is obtained.
Finally, Huet formulation is described. He introduced a pseudo-convolutive bilinear form, which
is not commutative in general, thus it is not symmetric even for relaxation kernels, which have
the universal symmetries of linear elasticity. This is the main reason why Huet’s formulations
are subjected to limitations. To overcome this issue, a so-called ”t-symmetrization” is per-
formed and a minimum principle is derived. Nevertheless, the usage of Huet’s functional is
acceptable only with step-by-step marching procedures.
Tonti’s extended formulations (1973) are introduced as a comparison (Section 2.3).
Three numerical simulations are performed (Section 2.4):

1. Bernulli-Navier viscoelastic beam, subject to a uniform load, with two rigid end supports
and an elastic support in the middle;

2. cable stayed bridge, subject to a uniform load, with viscoelastic girder and piers and
elastic stays;

3. reinforced cylinder under internal pressure.

The Finite Element Method is used for the space discretization and the Ritz method is used
for the time discretization.
The different formulations are applied and the results are compared in order to define the best
approach (Section 2.5).
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Chapter 3 starts with the description of classical variational formulations for the heat
conduction problem (Section 3.1).
Firstly, the linear transient heat conduction problem and its governing equations are introduced
(Section 3.2). The problem can be written in three different forms: a three-fields operatorial
form, a two-fields operatorial form and in a one-field form. Then the convolutive bilinear form
(already introduced in the previous Chapter) and the biconvolutive bilinear form are defined.
The latter depends on using a particular function of time, which recalls the relaxation function
governing the linear viscoelastic problem. Stationary principles are obtained.
Gurtin’s functionals (1963), using both the convolutive and the biconvolutive bilinear forms,
are thus written (Section 3.3).
Performing a decomposition of the integration time interval into two subintervals of the same
amplitude leads to the definition of different stationary principles (Section 3.4):

• a min-max principle of Tonti’s type using the convolutive bilinear form;

• a minimum-stationary principle using the biconvolutive bilinear form.

Numerical simulations are performed (Section 3.5). Two examples are introduced: a finite
rod with null initial temperature and a prescribed temperature at its ends and a finite square
element with null initial temperature and a prescribed temperature at its boundary with no
heat generation within the solid.
The Finite Element Method is used for the space discretization and the Ritz method is used
for the time discretization.
The different formulations are applied and the results are compared in order to define the best
approach (Section 3.6).

In Chapter 4 the upper and lower bounds defined by Voigt and Reuss for elasticity are ex-
tended to the viscoelastic case, only to the deviatoric part of the relaxation and creep kernels
(Section 4.1).
Firstly, an analysis of a system with elastic and viscoelastic materials arranged in series is
performed, using the TPE-type functional introduced by Carini and Mattei (2015).
Macroscopically isotropic composite materials are considered. The lower bounds are satisfied
and the upper bounds are proved only for the deviatoric part and they are also tested for the
volumetric part of the relaxation and creep kernels.
Starting from the deviatoric strains, several square RVEs have been constructed, each pos-
sessing inclusions with different shapes. A plane strain simple shear problem was considered,
applying, in the case of relaxation, boundary displacements corresponding to a constant unit
value for the average in-plane shear strain, and, for creep, boundary tractions corresponding to
a unit value for the average in-plane shear stress.
The analysis is conducted using the software ABAQUS and all the results confirm the pre-
scribed bound (Section 4.3).
As for the the volumetric strains, two examples are taken into account, each structure possessing
inclusions with different shapes (Section 4.4):

• sphere consisting of two phases, an elastic and a viscoelastic one. The internal phase
is also redistributed equally into smaller symmetrical portions and the phases are also
inverted (Section 4.4.1);

• RVE consisting of two phases, an elastic and a viscoelastic one. The internal phase consists
of several spherical inclusions of different volume and the phases are also inverted (Section
4.4.2).
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For the relaxation kernel, boundary displacements corresponding to a constant unit value for
volumetric strain are applied.
All these analysis prove that the upper bound is not valid for systems with volumetric strains.

Chapter 5 starts from Capurso-Maier functional (Corradi dell’Acqua, 1992) used in plastic-
ity in an incremental form and extend it to the case of fracture mechanics. A straight crack in
an infinite domain Ω∞ is considered first. From the definition of the energy-release rate a new
component is added to the functional, which symbolizes (in the case of plasticity) a negative
hardening (Sections 5.2.2-5.2.3). The Kuhn-Tucker complementary conditions are extended for
the process zone (Section 5.2.4), which is the plastic zone according to the analogy with plas-
ticity. A minimum principle is thus obtained for the Total Potential Energy type functional.
The functional is then reformulated, from a two-field form to a one-field form and an analogy
with the functional introduced by Salvadori and Carini (2011) is presented (Section 5.2.6).
Subsequently, the functional is generalized to the case of a finite body in a two/three-dimensional
space and a minimum formulation is performed (resorting to a Bramble and Pasciak method,
in Section 5.2.7). A hint on a possible Free-Energy functional is given for the viscoelastic frac-
ture mechanics, deriving from Francfort-Marigo formulation (2008) of the fracture mechanics
problem (Section 5.3).

In Chapter 6 firstly a brief reminder to the variational approach for the evaluation of dy-
namic instability performed by Leipholz (1970) is made (Section 6.1). In the first part of the
Chapter, the dynamical stability of plane systems with just one lumped mass is discussed.
The lumped-mass idealization, together with the assumption of negligible axial strain and the
adoption of the second-order theory, reduces the considered systems to a single Lagrangian
coordinate. In this way, static methods could be applied to derive the analytical expression of
the stiffness coefficient and to study the dynamic stability. In particular, if instability is due to
divergence at infinity, one can consider an auxiliary structure, differing from the original one
in that the lumped mass is replaced by a constraint blocking the corresponding Lagrangian
coordinate. Thus, the critical load of such new structure is due to divergence and it coincides
with the critical load by divergence at infinity of the original structure. Firstly a new lumped
mass system is studied: a straight-axis beam with constant cross-sectional area and stiffness,
mass-free, hinged at one end, simply supported at an intermediate point (with a sliding plane
parallel to the beam axis) and with the other end free, where a lumped mass is present and a
follower force (concentrated or distributed) is applied. For this particular problem there should
exist a position of the intermediate support, which divides divergence at infinity and Eulerian
instability (Section 6.2.2).
Numerical analysis are performed, the transition values are obtained (Section 6.2.3) and a new
rule for the determination of the critical load of dynamical systems, using only analytical meth-
ods, is established (Section 6.2.4).
In the second part of the Chapter, structures showing instability in tension are addressed. A
recall to the work of Zaccaria et al. (2011) is made, regarding the example of two inextensible
elastic rods clamped at one end and joint through a slider (see Fig. 6.7). Then, two conserva-
tive systems showing instability due to a tensile load are presented (Feriani and Carini, 2017),
obtained by symmetrizing a follower load. This analysis corresponds to summing Beck’s and
Reut’s non conservative loading conditions, where in each case the vertical load is equal to
P/2. The resulting applied load is conservative (Section 6.3.2). In Section 6.3.3 a new system
is studied: a straight-axis beam of length l with constant cross-sectional area and stiffness,
hinged at one end, simply supported at an intermediate point is presented and two different
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follower forces causing traction are applied. Results regarding the analysis with a concentrated
and distributed loads are presented.
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Chapter 2

On the effectiveness of convolutive type
variational principles in the numerical
solution of viscoelastic problems

Notation

Greek and latin letters

• Ω: Region occupied by a solid body;

• xr, r = 1, 2, 3: Cartesian coordinates;

• V : Volume of the solid body;

• Γ: External surface of the solid body;

• ni(xr): Unit outward normal vector components;

• ui(xr, t): Displacement vector components;

• ǫij(xr, t): Small strain tensor components;

• σij(xr, t): Stress tensor components;

• [0, 2T ]: Time interval;

• bi(xr, t): Body force vector components;

• pi(xr, t): Surface traction vector components;

• Γp: Loaded region of the boundary;

• ūi(xr, t): Prescribed displacement vector components;

• Γu: Constrained region of the boundary;

• Rijhk: Relaxation tensor or kernel;

• Cijhk: Creep tensor or kernel;

• u: Displacement vector with components ui;

6
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• b: Vector of the known terms;

• v: Unknown vector of the adjoint problem;

• a: Arbitrary known term;

• Φ(T ): Free energy density;

• D(T ): Dissipation power density;

• N(x, t): Axial force;

• M(x, t): Bending moment;

• χ(x, t): Curvature;

• A(x): Cross-section area;

• J(x): Moment of inertia;

• q(x, t): Transversal component of the distributed load;

• le: Length of the finite element;

• ri: Interpolation functions;

• δ: Vector of the degrees of freedom;

• βi: Vector of the time degrees of freedom;

• mi: Vector of time shape functions;

• E0, E1 Elastic moduli;

• η: Relaxation time;

• km: Elastic stiffness of the spring;

• α: Tikhonov regularization parameter.

Symbols

• =:: Is defined as;

• ◦: Convolution product;

• :̃ Adjoint operator;

•
′: Admissible term;

• 1: Variable defined over the first subinterval;

• 2: Variable defined over the second subinterval;

• �: Pseudo-convolution;

• :̂ Fictitious solution;
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• ⊆: Is included in;

• ⊇: Includes.

Operators and functions

• /i : Partial derivative operation;

• :̇ Derivation with respect to the time variable;

• L: Navier operator;

• FMF : Morse and Feshbach functional;

• 〈 , 〉: Standard bilinear form with time integral in the sense of Stieltjes;

• 〈 , 〉c: Bilinear form with time integral in the sense of Stieltjes but standard with respect
to space;

• FG: Gurtin’s functional;

• F SG: Split Gurtin functional;

• K: Tonti’s linear positive-definite operator;

• S: Linear elastic part of L;

• H(t): Heaviside function;

• FH : Huet’s functional.
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CHAPTER 2. ON THE EFFECTIVENESS OF CONVOLUTIVE TYPE VARIATIONAL
PRINCIPLES IN THE NUMERICAL SOLUTION OF VISCOELASTIC PROBLEMS

2.1 Introduction

The first theme of this thesis is the numerical use of variational principles for linear viscoelas-
ticity. As observed by Tonti (1973), variational formulations for initial value problems are not
possible in the classical context of the Calculus of Variations. This is because the linear oper-
ators relevant to linear initial value problems are not self-adjoint with respect to the standard
bilinear form, meaning the scalar product given by:

∫ T

0

f(t)g(t)dt (2.1.1)

or one of its variants. Historically, this problem was overcome by introducing artificial condi-
tions, thus converting the original initial value problem into a boundary value problem, which is
governed by a symmetric, self-adjoint operator (method of the formally self-adjoint operators).
Therefore, the new problem admits a variational formulation and this method was profusely
used in mechanics and theoretical physics (Hamilton principle, the stationary action principles
of electromagmetism, quantum mechanics, general relativity, etc.).

A variational formulation, valid simultaneously for the given problem and the adjoint
problem, was provided by Morse and Feshbach (1953). By using this method it is always
possible to rephrase any linear problem in a variational way, considering that the method of the
formally self-adjoint operators cannot be applied when the operator is not at least self adjoint.
This method considers, alongside with the original initial value problem, another artificial one
governed by the adjoint operator, then with final conditions. The use of the adjoint operator,
whether explicitly or implicitly, inspired a significant number of papers, especially for diffusion
problems. Nevertheless, justifying the attachment of the adjoint problem from a physical point
of view constitutes a great issue.

The earliest variational formulations for the viscoelastic problem, although under very
restrictive assumptions, date back to Biot (1956), Olszak and Perzyna (1959), Breuer and
Onat (1964), Hlaváček (1966), who proposed extremum formulations for isotropic viscoelastic
materials with Poisson’s ratio invariant in time, and Christensen (1968, 1971), who proposed
an extremum variational formulation, valid under restrictive assumptions, since the isotropy
of the material and separation of space and time in the expressions of the solution to the
viscoelasticity problem are required, using state functions such as the free energy.

The first true variational formulation for initial value problems dates back to Gurtin’s work
(1963, 1964a, 1964b). It is based on the use of convolution integrals, generalizing the classical
elasticity principles to the linear viscoelastic case, and it is valid for a large class of linear
time-dependent problems, including viscoelasticity, elastodynamics, and the heat conduction
problem. This approach is perfectly described by Tonti (1973): The choice of different bilinear
forms becomes the key to try to give variational formulation to new class of equations.
Gurtin’s approach consisted in converting the original initial-boundary value problem into an
equivalent boundary value problem, governed by integro-differential equations, through the
application of Laplace transorms.

Gurtin’s method was applied to the linear theory of viscoelasticity by many authors
(Schapery (1964), Leitman (1966), Taylor et al. (1970), Brilla (1972), Reddy (1976), just to
name a few) and is has also been extended to the method of boundary integral equations (Carini
et al. (1991)).

It should be emphasized that Gurtin’s variational principles and relevant generalizations
are not extremum principles. Nevertheless, Benthien and Gurtin (1970) showed that the Laplace
transform of the Gurtin-type stationarity formulations are in fact minimum formulations in the
transformed domain.
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Rafalski (1969) has the merit of having obtained extremal formulations for linear problems
with initial values. The limit of his results is that it is necessary to study the whole history, from
the time of the initial assignment of data to infinity. The work of Rafalski was later perfected
by Reiss (1978), who introduced a method, whereby the functional of Benthien and Gurtin
could be transformed back to the original space-time domain, while preserving the extremizing
characteristic of the functional, and by Reiss and Haug (1978), who formulated extremal prin-
ciples for problems with initial values, including the problem of hereditary viscoelasticity and
who explored the possibility of finding those functionals which return an extremum principle
for linear initial value problems.

Huet (1992), through the use of pseudo-convolutive and pseudo-biconvolutive bilinear
forms introduced in 1952 by Staverman and Schwarzl and extended in 1966-1969 by Mandel
and Brun (SSMB theory), although under restrictive assumptions, obtained two principles,
extensions of the minimum principles of the Total Potential Energy and the Complementary
Energy related to linear elasticity.

Tonti (1984) generalized the method to any non-linear problem through the application
of an ”integrating operator” that transforms the differential original problem into an integro-
differential one which admits a variational formulation. Tonti proved that not only does an
integrating operator always exists but that there is an infinite numbers of such operators.
Moreover, integrating operators can be found such that the functional is an extremum at the
solution. The latter approach was applied also to the linear viscoelasticity case by Carini et al.
(1995) and Carini and De Donato (2004).

In Carini and Mattei (2015) five principles are formulated: four of the variational type and
one of the minimum type. Minimum-stationary type formulations are obtained for the linear
viscoelastic problem. In the following these formulations are called “split Gurtin’s formula-
tions”, whose name derives from the division of the time domain into two equal subintervals,
thus doubling the original unknowns of the viscoelastic problem. Citing the article: The use of
a convolutive bilinear form and the decomposition of the time domain into two equal subinter-
vals are the necessary ingredients to reformulate the viscoelastic problem in terms of a minimum
variational problem, with evident advantages, both theoretical and computational.

To the authors’ knowledge, there does not appear to be any significant work in the lit-
erature concerning the use of variational formulations for the numerical solution of the linear
viscoelasticity problem. In particular, variational principles based on convolutive bilinear forms
with respect to time do not seem to have had any place so far in computational procedures
for the numerical determination of the viscoelastic response of solids or structures subjected
to external actions. In this Chapter we try to start filling this gap with reference to Gurtin’s
formulation and those related to it which have been mentioned above.

The Chapter is organized as follows. In Subsection 2, the linear viscoelastic problem and
the relative equations are introduced. In Subsection 3, Gurtin’s variational formulation and
those derived from it are presented, i.e., the split Gurtin formulation and the Huet formulation.
In Subsection 4, by using the Finite Element technique in space and the Ritz method in time,
a discretized formulation is applied and three numerical examples, of increasing complexity,
are shown with the aim of testing the effectiveness of the presented Gurtin type variational
formulations in the numerical solution of the linear viscoelastic problem. The first example is
a viscoelastic beam on elastic support subjected to a constant distributed load. The second
example is a cable-stayed bridge with girder and piers made of concrete and stays made of steel,
subjected to a constant distributed load. The third and last example is e a plane strain cylinder
of viscoelastic material, surrounded by an elastic steel casing and subjected to an internal
pressure history (first constant, and then variable over three time intervals). In Subsection 5,
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conclusions and open issues are discussed, therefore a list of references is presented.

2.2 The linear viscoelastic problem

Consider a solid body Ω ⊂ R
3 made of a linear viscoelastic material, possibly anisotropic. An

orthogonal Cartesian reference system is used, with coordinates xr, r = 1, 2, 3. The components
of vectors, second order, and fourth order tensors are indicated with the usual indicial notation.
Einstein’s convention over repeated indices is adopted, for which when an index variable appears
twice in a single term and is not otherwise defined, it implies summation of that term over all
the values of the index.

Denote by V the volume of the region Ω and by Γ its external surface, with unit outward
normal ni(xr). Let ui(xr, t), ǫij(xr, t) and σij(xr, t) be, respectively, the displacement, strain,
and stress fields at the point xr ∈ Ω, at the time t ∈ [0, 2T ]. The solid may be subjected to a
history of body forces bi(xr, t), to a history of surface tractions pi(xr, t) acting on the loaded
region Γp of the boundary, and to a history of prescribed displacements ūi(xr, t) acting on the
constrained boundary Γu, with Γu ∪ Γp = Γ.

The body is undisturbed for t < 0 and the whole loading history is supposed to be defined
in the given time range t ∈ [0, 2T ], 2T being the end time of the loading process.

The stress field σij(xr, t), with σij(xr, t) = 0 for t < 0, satisfies the equilibrium equations:

σij/j(xr, t) + bi(xr, t) = 0 in Ω× [0, 2T ]

σij(xr, t)nj(xr) = pi(xr, t) on Γp × [0, 2T ]
(2.2.1)

where the symbol / indicates the partial derivative operation.
The displacement field ui(xr, t) and the strain field ǫij(xr, t) with ui(xr, t) = 0 and ǫij(xr, t) = 0
for t < 0, fulfill the strain-displacement relations:

ǫij(xr, t) =
1

2
(ui/j(xr, t) + uj/i(xr, t)) in Ω× [0, 2T ]

ui(xr, t) = ūi(xr, t) on Γu × [0, 2T ]
(2.2.2)

Here, we deal only with non-aging materials (i.e., we consider only the hereditary vis-
coelasticity case), for which the direct constitutive law, that relates a known strain field ǫij(xr, t)
to the corresponding stress field σij(xr, t), can be written as follows (this form derives from the
Boltzmann superposition principle, and it describes the stress field at the time t, in the fixed
point xr ∈ Ω , due to the strain increments dǫhk(xr, τ), for τ ∈ [0, t]):

σij(xr, t) =

∫ t

0−
Rijhk(xr, t− τ) dǫhk(xr, τ) (2.2.3)

where Rijhk(xr, t), with t > 0 (we assume that Rijhk(xr, t) = 0 for t < 0), is the relaxation
tensor, or kernel and the integral has to be meant in the Stieltjes sense.
We recall that, considering two functions f and g, the convolution product can be written in
two different forms, i.e. the Stieltjes-type convolution:

〈f(t), g(t)〉Sc =
∫ t

0−
f(t− τ) dg(τ) (2.2.4)

and the Lebesgue-type convolution:

〈f(t), g(t)〉Lc =
∫ t

0

f(t− τ)g(τ) dτ (2.2.5)
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Using the latter, the direct constitutive law (2.2.3) can be written in the Volterra form:

σij(xr, t) = Rijhk(xr, 0)ǫhk(xr, t) +

∫ t

0

Ṙijhk(xr, t− τ)ǫhk(xrτ) dτ (2.2.6)

where the dot indicates derivation with respect to the time variable.
We assume that the relaxation tensor satisfies the same symmetry properties enjoyed also

by the linear elasticity constitutive tensors:

Rijhk(xr, t) = Rjihk(xr, t) = Rijkh(xr, t) = Rhkij(xr, t) ∀xr ∈ Ω, ∀t ∈ [0, 2T ] (2.2.7)

and that the following inequalities hold:

R0
ijhk(xr)λij λhk > 0 , R∞

ijhk(xr)λij λhk > 0 (2.2.8)

for every xr ∈ Ω and for every non-vanishing symmetric second order tensor λij, R
0
ijhk(xr) and

R∞

ijhk(xr) being defined, respectively, as

R0
ijhk(xr) := lim

t→0
Rijhk(xr, t) , R∞

ijhk(xr) := lim
t→+∞

Rijhk(xr, t). (2.2.9)

We further assume that the constitutive laws (2.2.3) and (2.2.6) are invertible, with the inverse
forms written as:

ǫij(xr, t) =

∫ t

0−
Cijhk (xr, t− τ) dσhk(xr, τ) (2.2.10)

ǫij(xr, t) = Cijhk(xr, 0)σhk(xr, t) +

∫ t

0

Ċijhk(xr, t− τ)σhk(xrτ) dτ (2.2.11)

in which the symbol Cijhk(xr, t) denotes the creep tensor, or kernel, which enjoys the same
properties as Rijhk(xr, t).

For the conditions of invertibility of equations (2.2.3) and (2.2.6), see for instance Fabrizio
(1992), and Bozza and Gentili (1995).

The equilibrium equations in terms of displacements (Navier’s equations) are:

− ∂

∂xi

∫ t

0−
Rijhk(xr, t− τ)

1

2
d
(
uh/k + uk/h

)
(τ) = bj in Ω× [0, 2T ]

ni

∫ t

0−
Rijhk(xr, t− τ)

1

2
d
(
uh/k + uk/h

)
(τ) = pj on Γp × [0, 2T ]

(2.2.12)

with ui satisfying the kinematic boundary conditions ui = ūi on Γu. Equation (2.2.12a) can be
written in the following operatorial form:

Lu = b (2.2.13)

with u the displacement vector with components ui, b the vector of the known terms with
components bi and L the Navier operator.

2.3 Variational formulations in viscoelasticity

In viscoelasticity, the lack of symmetry of the constitutive operators of eqs. (2.2.3) and (2.2.10),
with respect to standard bilinear forms (see for example Tonti, 1973, 1984), has severely hin-
dered the development of variational formulations. Some results have been obtained in the
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past making reference to convolutive bilinear forms (Gurtin, 1963; Tonti, 1973). Given any two
functions f(xr, t) and g(xr, t), we introduce the following notation for the basic convolution
integral, such as the one adopted in eqs. (2.2.3) and (2.2.10):

f(xr, t) ◦ g(xr, t) :=

∫ t

0−
f(xr, t− τ)dg(xr, τ) =

∫ t

0−
g(xr, t− τ)df(xr, τ) = g(xr, t) ◦ f(xr, t).

(2.3.1)
The symbol ◦ introduced in the above formula and used by several Authors (see, for instance,
Huet (1992), Charpin and Sanahuja (2017)), is a simplification of the symbol ⊗ adopted, for
instance, by Mandel (1966) and Leitman and Fisher (1973). The symbol ◦ is not to be confused
with the standard convolution symbol ∗, see, e.g. Gurtin and Sternberg (1962).
The properties of the convolution are listed below:

f ◦ g = g ◦ f ;
f ◦ g = 0 implies either f = 0 or g = 0;

f ◦ (g ◦ h) = (f ◦ g) ◦ h = f ◦ g ◦ h;
f ◦ (g + h) = f ◦ g + f ◦ h.

(2.3.2)

In this Subsection we present and discuss the variational formulations adopted in the next
Subsection for the numerical determination of the viscoelastic response of solids and structures
subjected to external actions. In particular, Gurtin’s formulation and the formulations derived
from it, i.e. the split Gurtin formulation and the Huet formulation, will be taken into consider-
ation. Tonti’s “extended” formulation will be used as a comparison. The formulation based on
adding the adjoint equation (see Morse and Feshbach (1953)) is somehow related to Gurtin’s
formulation.

1) The method of the adjoint equation and Gurtin’s formulation

Gurtin’s formulation can be derived directly from the method of adding the adjoint equa-
tion (see Morse and Feshbach (1953)). In fact, consider the Navier equation (2.2.12a) (here
we suppose, for simplicity, homogeneous boundary conditions) and write the adjoint equation
with respect to the standard bilinear form (see the definition (2.3.9)) as follows:

− ∂

∂xi

∫ t

2T

Rijhk(xr, τ − t)
1

2
d
(
vh/k + vk/h

)
(τ) = aj in Ω× [0, 2T ] (2.3.3)

or, in operatorial form
L̃v = a (2.3.4)

with v the unknown vector of the adjoint problem with components vi and a is an arbitrary
known term with components ai. The two equations, the original one and the adjoint one, can
be represented in symmetrical matrix form as follows:

Sz = h (2.3.5)

with

S :=

[
0 L̃

L 0

]
, z :=

[
u
v

]
, h :=

[
a
b

]
. (2.3.6)

By the symmetry of the operator S, with respect to the standard bilinear form, a variational
formulation becomes possible and the solution z of the equation (2.3.5) can be obtained by the
solution of the following stationarity problem:

FMF (z) = stat
z
′

FMF (z
′

) (2.3.7)
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where z
′

is any vector belonging to the domain of S and

FMF (z
′

) = FMF (u
′

,v
′

) =
1

2
〈Sz′

, z
′〉 − 〈h, z′〉 = 〈Lu′

,v
′〉 − 〈b,v′〉 − 〈a,u′〉 (2.3.8)

where 〈b,v′〉 is the standard bilinear form with time integral in the sense of Stieltjes

〈b,v′〉 :=
∫

Ω

∫ 2T

0−
bi(x, t) dv

′

i(x, t) dΩ. (2.3.9)

If we take
a(t) = b(2T − t) (2.3.10)

and by making the change of variables 2T − τ = τ̄ e 2T − t = t̄, the adjoint equation (2.3.3)
becomes

− ∂

∂xi

∫ t̄

0

Rijhk(xr, t̄− τ̄)
1

2
d
(
vh/k + vk/h

)
(2T − τ̄) = bj(t̄) in Ω× [0, 2T ] (2.3.11)

which, compared with the starting equation (2.2.12a) allows us to easily deduce that

v(t) = u(2T − t) (2.3.12)

and, therefore, FMF is a function only of u
′

:

FMF (u
′

) = 〈Lu′

,u
′

(2T−t)〉−〈b,u′

(2T−t)〉−〈b(2T−t),u
′〉 = 〈Lu′

,u
′〉c−2〈b,u′〉c. (2.3.13)

where

〈b,u′〉c :=
∫

Ω

∫ 2T

0−
bi(x, 2T − t) du

′

i(x, t) dΩ (2.3.14)

is a bilinear form convolutive (in the sense of Stieltjes) with respect to time but standard with
respect to space.

In the case of homogeneous boundary conditions, the functional of the Total Potential
Energy type obtained by Gurtin (1963) coincides with (2.3.13), the one obtained by the method
of the adjoint equation. Gurtin derived his functional starting from the bilinear form (2.3.14).
In the case of inhomogeneous boundary conditions, Gurtin’s functional takes the more general
form:

FG(u
′

i) =
1

2

∫

Ω

∫ 2T

0−

∫ 2T−t

0−
Rijhk(x, 2T − t− τ) dǫ

′

ij(x, t) dǫ
′

hk(x, τ) dΩ

−
∫

Ω

∫ 2T

0−
bj(x, 2T − t) du

′

j(x, t) dΩ−
∫

Γp

∫ 2T

0−
pj(x, 2T − t)du

′

j(x, t) dΓp

(2.3.15)

under the kinematically admissiblility constraints ǫ
′

ij =
1
2
(u

′

i/j + u
′

j/i) (definition equation) and

u
′

i = ūi on Γu

2) Split Gurtin’s formulation

In Carini and Mattei (2015) five new variational formulations for the viscoelastic problem
are derived, one of which is of the minimum type. Here, these new formulations are conveniently
interpreted as obtained from the decomposition of the time interval [0, 2T ] into two sub-intervals
([0, T ] and [T, 2T ]) of equal length (see, also, Huet (1999, 2001a, 2001b)). The unknowns are
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thus formally doubled: the variables defined in the first sub-interval and those defined in the
second one. Accordingly, the strain and stress fields can be written, respectively, as:

ǫij(t) =

{
ǫ1ij(t) for t ∈ [0, T ]
ǫ2ij(t) for t ∈ [T, 2T ]

(2.3.16)

σij(t) =

{
σ1ij(t) for t ∈ [0, T ]
σ2ij(t) for t ∈ [T, 2T ]

(2.3.17)

(from here on, unless strictly necessary, we will omit indicating the dependence on the space
coordinate xr) where subscript 1 refers to the quantities defined over the time interval [0, T ],
and subscript 2 indicates quantities defined over [T, 2T ]. As a consequence, the constitutive law
operator is split into sub-operators, that can be arranged into a two-by-two matrix symmetric
with respect to Gurtin’s convolutive bilinear form (see Carini and Mattei, 2015).

The direct constitutive law (2.2.3), by virtue of (2.3.16) and (2.3.17) and thanks to Boltz-
mann’s superposition principle, can be split as follows:

σ1ij(t) =

∫ t

0−
Rijhk(t− τ) dǫ1hk(τ) for t ∈ [0, T ] (2.3.18)

σ2ij(t) =

∫ T

0−
Rijhk(t− τ) dǫ1hk(τ) +

∫ t

T

Rijhk(t− τ) dǫ2hk(τ) for t ∈ [T, 2T ]. (2.3.19)

Eqs. (2.3.18) and (2.3.19) can be rewritten in the following compact, and symmetric, matricial
form:

σ = L ǫ (2.3.20)

with

L :=

[
A B
C 0

]
:=




∫ T

0−
Rijhk(t− τ) d(.)

∫ t

T

Rijhk(t− τ) d(.)

∫ t

0−
Rijhk(t− τ) d(.) 0




for t ∈ [T, 2T ]

for t ∈ [0, T ]

(2.3.21)

ǫ :=

[
ǫ1ij(t)
ǫ2ij(t)

]
; σ :=

[
σ2ij(t)
σ1ij(t)

]
(2.3.22)

The convolutive bilinear form was introduced by Gurtin (1963) (see also Tonti, 1973) and,
for our purposes, fixed a material point xr of the viscoelastic solid, and a time 2T > 0, from
here on is defined (in the Stieltjes sense) as follows:

(
σ′

ij, ǫ
′′

ij

)
c
:= σ′

ij(2T ) ◦ ǫ′′ij(2T ) :=
∫ 2T

0−
σ′

ij(2T − t) dǫ′′ij(t) (2.3.23)

where quantities with one or two apexes denote generic symmetric stress and strain tensors,
and 2T denotes the end time of the considered loading history.

Operator A is self-adjoint with respect to (2.3.23), i.e.:

(
Aǫ′1ij, ǫ

′′

1ij

)
c
=

∫ T

0−

∫ T

0−
Rijhk(2T − t− τ)dǫ′1ij(τ) dǫ

′′

1ij(t) =
(
Aǫ′′1ij, ǫ

′

1ij

)
c

(2.3.24)
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while B is the adjoint operator of C, that is:

(
Bǫ′2ij, ǫ

′′

1ij

)
c
=

∫ T

0−

∫ 2T−t

T

Rijhk(2T − t− τ)dǫ′2ij(τ) dǫ
′′

1ij(t)

=

∫ 2T

T

∫ 2T−t

0−
Rijhk(2T − t− τ)dǫ′1ij(τ) dǫ

′′

2ij(t) =
(
Cǫ′′1ij, ǫ

′

2ij

)
c
=

(
B̃ǫ′′1ij, ǫ

′

2ij

)
c

(2.3.25)

in which the superscript˜denotes the adjoint operator with respect to the adopted convolutive
bilinear form. The operatorial formulation (2.3.20) is therefore symmetric, and it is equivalent
to the constitutive law (2.3.18)-(2.3.19). Operator A is also, in general, positive semi-definite.
In fact, the following quadratic form

φ(T ) =
(
Aǫ′1ij, ǫ

′

1ij

)
c
=

∫ T

0−

∫ T

0−
Rijhk(2T − t− τ) dǫ′1hk(τ) dǫ

′

1ij(t) (2.3.26)

has the physical meaning of the free energy per unit volume of the material (see Mandel 1966), a
non-negative quantity, which explains the positive semi-definition of operator A of eq. (2.3.21).
Note that this operator has not the form of eq. (2.2.3), owing to its upper integration limit.
Therefore, even though we have assumed the constitutive operator (2.2.3) to be invertible,
nothing can be said, in general, about the invertibility of operator A.

A completely analogous path allows one to introduce a symmetric split formulation for
the inverse constitutive law, expressed in terms of the creep kernel, which we skip here for the
sake of brevity (see Carini and Mattei, 2015).

From this new split approach, exploiting symmetry only, Carini and Mattei (2015) were
able to derive several saddle-point formulations, of which the first one (of the Total Potential
Energy type) is especially interesting for the purposes of the present work and reads as follows:

F SG(u1i, u2i) = min
u′

1i

stat
u′

2i

F SG(u′

1i, u
′

2i) (2.3.27)

where

F SG[u′

1i, u
′

2i] =
1

2

∫

Ω

(
Aǫ′1ij(2T ) ◦ ǫ′1ij(2T ) + 2B̃ǫ′1ij(2T ) ◦ ǫ′2ij(2T )

)
dΩ

−
∫

Ω

b2i(2T ) ◦ u′

1i(2T ) dΩ−
∫

Ω

b1i(2T ) ◦ u′

2i(2T ) dΩ

−
∫

Γp

p2i(2T ) ◦ u′

1i(2T ) dΓ−
∫

Γp

p1i(2T ) ◦ u′

2i(2T ) dΓ.

(2.3.28)

Here u1i(t) and u2i(t) are the exact solution of the problem, and u′

1i(t), u
′

2i(t), ǫ
′

1ij(t), and ǫ′2ij(t)
are arbitrary but compatible displacement and strain fields.

A mixed minimum formulation was also derived in Carini and Mattei (2015), by trans-
forming the problem operator L of eq. (2.3.21) into a positive definite one. Despite looking
very promising, precisely because it is a true minimum principle, this formulation is quite hard
to be adopted as a basis for further calculations, since it involves operator A−1, which, even
assuming it to exist, is extremely difficult to be suitably characterized. Note that the inversion
of operator A on the main diagonal of L in eq. (2.3.21) requires, as a necessary condition, that
it be positive definite, not just positive semi-definite as it was shown to be in general. This
happens, for example, when the relaxation tensor Rijhk(xr, t) is completely monotonic (see Del
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Piero and Deseri, 1996).
The use of a convolutive bilinear form and the decomposition of the time domain into two equal
subintervals are the necessary ingredients to reformulate the viscoelastic problem in terms of a
minimum variational problem, with evident advantages, both theoretical and computational.
In the following numerical applications, if the external actions remain constant from a certain
time T0 onwards and if T is long enough one attains a purely minimum principle, as the solution
on the second subinterval [T, 2T ] is substantially constant.

3) Huet’s formulation

The extremum theorems derived by Huet (1992) are valid only under severe restrictions
and were proposed for linear quasi-static viscoelasticity without aging, with material, isotropic
or not, for which a free energy density per unit volume φ(T ) and a dissipation power density
D(T ) can be expressed from the relaxation function or the creep function. As demonstrated by
Mandel (1966) and Brun (1965, 1969), by their extensions of the results obtained by Staverman
and Schwarzl (1952 a, b), this occurs at least for the behaviours which can be dealt with through
an internal variable approach. An essential ingredient for Huet’s approach are Brun’s (1965,
1969) formal identities giving viscoelastic analogues to the Clapeyron equation of elasticity.
Huet (1992) introduced a pseudo-convolutive formalism based on results obtained by Brun
(1965, 1969). In particular Brun gave a generalization of the Clapeyron equation for the non-
aging viscoelastic case, which expresses D(T ) and φ (Helmholtz free energy) in terms of ǫij and
σij only:

D(T ) = −
(∫ T

0−
−
∫ 2T

T

)
σ̇ij(2T − t) dǫij(t); (2.3.29)

φ(T ) =
1

2

(∫ T

0−
−
∫ 2T

T

)
σij(2T − t) dǫij(t). (2.3.30)

This is a bilinear form in σij and ǫij, which restitutes the Staverman and Schwarzl formulas
when replacing σij by its value given by the constitutive equation:

D(T ) =−
(∫ T

0−
−
∫ 2T

T

)
σ̇ij(2T − t) dǫij(t) =

=−
(∫ T

0−
−
∫ 2T

T

)∫ 2T−t

0−
Ṙijhk(2T − t− τ) dǫij(τ) dǫhk(t) =

=−
∫ T

0−

∫ T

0−
Ṙijhk(2T − t− τ) dǫij(τ) dǫhk(t).

φ(T ) =
1

2

(∫ T

0−
−
∫ 2T

T

)
σij(2T − t) dǫij(t) =

=
1

2

(∫ T

0−
−
∫ 2T

T

)∫ 2T−t

0−
Rijhk(2T − t− τ) dǫij(τ) dǫhk(t) =

=
1

2

∫ T

0−

∫ T

0−
Rijhk(2T − t− τ) dǫij(τ) dǫhk(t).

Huet introduced from the form exhibited by the free energy density a pseudo-convolution a�b
of two functions a(t) and b(t) from the forms exhibited by the free energy:

a�b =

(∫ T

0−
−
∫ 2T

T

)
a(2T − t) db(t). (2.3.31)
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It is important to note that the pseudo-convolution a�b is not commutative in general:

a�b 6= b�a. (2.3.32)

This means that, in contrast with the bilinear form associated to the Staverman and Schwarzl
quadratic one, the pseudo-convolution is not symmetric even for kernels Rijhk having the uni-
versal symmetries of linear elasticity. This is the basic reason for which the minimum theorems
derived by Huet (1992) are subjected to restrictions.

To overcome the problem, Huet introduced the so-called “t-symmetrizing” virtual field.
A t-symmetrizing virtual field ǫ̃ij verifies:

∫

Ω

Rijhk ◦ ǫ̃ij�ǫhk dV =

∫

Ω

Rijhk ◦ ǫij�ǫ̃hk dV. (2.3.33)

ǫ̃ij has to be kinematically admissible, but it is not required for it to satisfy the constitutive
equations. The Total Potential Energy type formulation introduced by Huet, a minimum
theorem for the displacements, can be expressed as follows:
among all the kinematically admissible (that is ǫ̃ij =

1
2
(ũi/j + ũj/i) and ũi = ūi on Γu) and “t-

symmetrizing” virtual displacement and strain field histories, the actual solution field histories
is the solution of the following minimum problem:

FH(û) = min
ũi

FH(ũi) (2.3.34)

where

FH(ũi) =
1

2

∫

Ω

Rijhk ◦ ǫ̃ij�ǫ̃hk dV −
∫

Ω

Fi�ũi dV −
∫

Γp

pi�ũi dΓ =

=
1

2

∫

Ω

∫ T

0−

∫ T

0−
Rijhk(2T − t− τ) dǫ̃ij(τ) dǫ̃hk(t) dV

−
∫

Ω

(∫ T

0−
−
∫ 2T

T

)
Fi(2T − t) dũi(t) dV −

∫

Γp

(∫ T

0−
−
∫ 2T

T

)
pi(2T − t) dũi(t) dΓ.

(2.3.35)

In general, the solution ûi of the problem (2.3.34) sought without the constraint (2.3.33) on ũi

and ǫ̃ij differs from the true solution. In the following we will call ûi a “fictitious” solution.
In the case u(t) remains constant from T onwards, it is possible to show, however, that the
“fictitious” solution “contains” in itself the real one if one sets, in it, t = T .

In fact, in this case, imposing the stationarity of Huet’s functional (2.3.35) one gets the
following equilibrium conditions (using the notation previously introduced, i.e. subscript 1 and
2 refer to the quantities defined over [0, T ] and [T, 2T ], respectively):

− ∂

∂xi

[∫ T

0−
Rijhk(2T − t− τ) dǫ1hk(τ)

]
= b2j(2T − t) in Ω (2.3.36)

ni

[∫ T

0−
Rijhk(2T − t− τ) dǫ1hk(τ)

]
= p2j(2T − t) on Γp (2.3.37)

with 0 ≤ t ≤ T . Observe that, as said, in this equilibrium condition one has explicit functions
of both t and T .

It can now be seen that the solution ǫ̂1ij(t, T ) to problem (2.3.36)-(2.3.37) coincides, at
time t = T , with the solution of the starting problem. In fact, setting t = T in eqs. (2.3.36)-
(2.3.37), one obtains

− ∂

∂xi

[∫ T

0−
Rijhk(T − τ) dǫ1hk(τ)

]
= b2j(T ) in Ω (2.3.38)
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ni

[∫ T

0−
Rijhk(T − τ) dǫ1hk(τ)

]
= p2j(T ) on Γp (2.3.39)

which coincide with the true equilibrium equations for ǫ1ij(t) at time t = T if the loading terms
fulfill the following continuity condition at time t = T :

b2i(T ) = b1i(T ); p2i(T ) = p1i(T ). (2.3.40)

In a step-by-step time marching procedure, for each step, a displacement field constant over
time and satisfying the kinematic boundary conditions can be considered a “t-symmetrizing”
virtual field.

4) Tonti’s extended formulation

Consider the problem (2.2.13). Since L is not a symmetric operator with respect to the
standard bilinear form, it is not possible to reformulate the problem as a classical variational
statement. Nevertheless, Tonti (1984) proved that it is possible to transform the equation
(2.2.13) into an “extended” linear symmetric one as follows:

L̃KLu = L̃Kb (2.3.41)

where L̃ is the adjoint of L and K is a linear positive definite, invertible operator, symmetric
with respect to the standard bilinear form, the so-called “integrating” or “kernel” operator,
with D(K) ⊇ R(L) (where D(K) is the domain of the operator K and R(L) is the range of
operator L) and R(K) ⊆ D(L̃). The transformation of equation (2.2.13) into the equivalent
symmetric one (2.3.41) leads to what is called an “extended variational formulation”. In fact,
it is easy to prove that the solution of problem (2.3.41) minimizes the following “extended”
functional (Tonti, 1984):

F ext(u
′

) =
1

2
〈Lu′ − 2b,KLu

′〉 (2.3.42)

where 〈., .〉 is the standard bilinear form. Tonti’s statement is invertible: a function u
′

which
minimizes the functional (2.3.42) is also the solution u of the problem (2.3.41), if this problem
admits a solution. The choice of the kernel operator K is crucial in determining the condition-
ing of the problem which arises from imposing the stationarity of the functional (2.3.42). For
instance, if the kernel is chosen as simply the identity operator, than the extremal property of
the extended functional (2.3.42) reduces to a least square formulation, well known for its bad
conditioning. Here, we consider, for the linear viscoelastic problem, the formulation proposed
by Carini, Gelfi, Marchina (1995) in which K = S

−1 where S is the linear elastic part of L. In
the next Section the formulation proposed by Carini, Gelfi and Marchina (1995) will be used
as a comparison.

5) Particularization of the previous functionals to plane frame structures

In the case of plane frame structures, the classical hypothesis of Bernoulli-Navier and a
first-order beam theory are assumed. Let the kinematic of a straight beam be defined by the

vector u =

[
u
v

]
where u and v are the x and y displacements of the centroid of the cross

section at x (x is the longitudinal axis of the beam and y the transversal one). Denoting with
N(x, t) and M(x, t) the axial force and the bending moment, the constitutive viscoelastic law
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may be written as

N(x, t) =

∫ t

t−0

R(x, t− τ)A(x) dǫ(x, τ) (2.3.43)

M(x, t) =

∫ t

t−0

R(x, t− τ)J(x) dχ(x, τ) (2.3.44)

where ǫ = ∂u/∂x and χ = −∂2v/∂x2 are the axial strain and curvature, respectively, while
A(x), J(x) and R(x, t) are the cross-section area, its moment of inertia and the relaxation
function, respectively. Then, denoting with p(x, t) and q(x, t) the longitudinal and transversal
components of the distributed load, the general beam equilibrium equations become:

− ∂

∂x

∫ t

t−0

R(x, t− τ)A(x)
∂ du(x, τ)

∂x
= p(x, t) (2.3.45)

∂2

∂x2

∫ t

t−0

R(x, t− τ)J(x)
∂2 dv(x, τ)

∂x2
= q(x, t). (2.3.46)

Using the previous notation, in the case of structures composed by a number m of straight
beams (the index e is added to any quantity relevant to the generic beam e, e = 1, ...,m),
Gurtin’s functional, split Gurtin’s functional and Huet’s functional are shown in Table 2.1.

Gurtin FG(u, v) =
∑m

e=1

{
1
2

∫ le

0

∫ 2T

0−

∫ 2T−t

0−
[Re(x, 2T − t− τ)Ae dǫe(x, t) dǫe(x, τ)

+Re(x, 2T − t− τ)Je dχe(x, t) dχe(x, τ)] dx

−
∫ le

0

∫ 2T

0−
pe(x, 2T − t) due(x, t) dx−

∫ le

0

∫ 2T

0−
qe(x, 2T − t) dve(x, t) dx

}

Split F SG(u1, u2, v1, v2) =
∑m

e=1

{
1
2

∫ le

0

∫ T

0−

∫ T

0−
[Re(x, 2T − t− τ)Ae dǫe1(x, t) dǫ

e
1(x, τ)

Gurtin +Re(x, 2T − t− τ)Je dχe
1(x, t) dχ

e
1(x, τ)] dx

+
∫ le

0

∫ 2T

T

∫ 2T−t

0−
[Re(x, 2T − t− τ)Ae dǫe1(x, τ) dǫ

e
2(x, t)

+Re(x, 2T − t− τ)Je dχe
1(x, τ) dχ

e
2(x, t)] dx

−
∫ le

0

[∫ T

0−
pe2(x, 2T − t) due

1(x, t) dx+
∫ 2T

T
pe1(x, 2T − t) due

2(x, t) dx
]

−
∫ le

0

[∫ T

0−
qe2(x, 2T − t) dve1(x, t) dx+

∫ 2T

T
qe1(x, 2T − t) dve2(x, t) dx

]}

Huet FH(u, v) =
∑m

e=1

{
1
2

∫ le

0

∫ T

0−

∫ T

0−
[Re(x, 2T − t− τ)Ae dǫe(x, t) dǫe(x, τ)

+Re(x, 2T − t− τ)Je dχe(x, t) dχe(x, τ)] dx

−
∫ le

0

(∫ T

0−
−
∫ 2T

T

)
pe(x, 2T − t) due(x, t) dx−

∫ le

0

(∫ T

0−
−
∫ 2T

T

)
qe(x, 2T − t) dve(x, t) dx

}

Table 2.1: Functionals for plane frame structures.
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2.4 Numerical simulations

In the case of planar frame structures, standard finite elements of length le with two nodes will
be considered, with three degrees of freedom in each node, with linear interpolation functions
for the “extensional” degrees of freedom r1 and r2 and with cubic interpolation functions for
the “bending” degrees of freedom r3, r4, r5, r6 (see Fig. 2.12c). Each beam can be subdivided
into several straight finite elements.
The six shape functions ni (i = 1, ..., 6) relevant to the degrees of freedom 1, ..., 6 are:

n1(x) = 1− x

le
;

n2(x) =
x

le
;

n3(x) = 1− 3x2

le2
+

2x3

le3
;

n4(x) = le ·
(
x

le
− 2x2

le2
− x3

le3

)
;

n5(x) =
3x2

le2
− 2x3

le3
;

n6(x) = le ·
(
−x2

le2
+

x3

le3

)
.

(2.4.1)

In the following we will suppose, for simplicity, that each element has constant cross-section
(i.e. Ae and Je are independent of x) and homogeneous material.

In the case of a three-dimensional body analysed in 2D, let’s subdivide the solid into N
finite elements. In the following we will suppose, for the sake of simplicity, that each element
is constituted by a homogeneous material (i.e., Re

ijhk = Re
ijhk(t)) and we will assume zero given

displacements on Γu. Let ue(x, t) be the displacement vector of an internal point x of the
finite element e (e = 1, ..., N), ue, ve, we being the displacement components along x, y, z,
respectively.

In the following we will denote with δ(t) (with components δ1, ..., δns
) the vector of the

ns degrees of freedom of the assembled solid, with respect to the global reference system both
in the case of three-dimensional bodies and in the case of plane frame structures.

Time discretization. Each component δi(t) of the spatial degrees of freedom vector of the
assembled solid is now written as a function of nt time degrees of freedom βi (with components
βi1, βi2, ...βint

) through time interpolation functions collected into the matrixM(t), with t ∈ 2T :

δ(t) =




δ1(t)
.
.
.

δns
(t)



=




m1(t)
...

mns
(t)


 .




β1

...
βns


 = M(t)B. (2.4.2)

In every example shown hereafter, all the spatial degrees of freedom δi(t) are discretized with
respect to time using the same interpolation functions, i.e.

m1 = ... = mns
= m = [m1 ...mnt

]. (2.4.3)

In this way, ns × nt is the total number of degrees of freedom.
In the examples discussed in the next Section two different procedures will be adopted,

specified case by case. In a first one the solution is sought in a single step over the entire
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time interval 2T . In this case the numerical response is not obtained by means of a step-by-
step method, but is given immediately on the whole temporal range without the need of a time
integration procedure. In a second procedure the variational technique is applied on subintervals
of the original integration time range 2T , therefore becoming a step-by-step procedure.

Here we introduce three examples of calculation of the structural effects of creep. For
the first two examples we use the hereditary Kelvin-Voigt model (see Fig. 2.12d). For the
Kelvin-Voigt model the relaxation function R and the creep function C for the uniaxial case
are:

R(t− τ) = E0 −
E2

0

E0 + E1

(
1− e−(E0+E1)(t−τ)/η

)
= E∞ + (E0 − E∞) e−(t−τ)/T ∗

(2.4.4)

C(t− τ) =
1

E0

+
1

E1

(
1− e−E1(t−τ)/η

)
=

1

E∞

+

(
1

E0

+
1

E1

)
e−(t−τ)/τ∗ (2.4.5)

where

E∞ =
E0E1

E0 + E1

; τ ∗ =
η

E1

; T ∗ =
η

E0 + E1

. (2.4.6)

The extension to the multiaxial case is straightforward.
Whereas, for the third and last example, only the deviatoric part of the constitutive law is
viscoelastic and we use a classical Maxwell model, for which the relaxation function R and the
creep function C for the uniaxial case are:

R(t− τ) = E0e
−E0(t−τ)/η (2.4.7)

C(t− τ) =
1

E0

+
t

η
(2.4.8)

In all the examples, negative exponential time interpolation functions are used:

m =
[
1, e−t/t∗ , e−t/10t∗ , e−t/100t∗ , ...

]
. (2.4.9)

where t∗ is a parameter to be defined and has the meaning of a relaxation time. For the
examples considered herein, these interpolation functions were empirically found to be better
than polynomial or damped polynomial functions.

The asymptotic character of the viscoelastic responses over large time intervals justifies
the above choice of the negative exponential interpolation functions which appear more suitable
for a good approximation of the structural behaviour even in the presence of a small number of
temporal degrees of freedom, especially when solving the problem over the entire time interval.
Polynomial time interpolation functions could also be chosen, but only for short enough time
intervals.

The sequence of relaxation times t∗, 10t∗, 100t∗, ..., adopted for the time interpolation
functions in (2.4.9), has provided good numerical results. Both this type of sequence and the
numerical values of t∗, in the absence of theoretical indications, have been found by trial and
error.

For each example, significant displacements and/or stresses are plotted versus time, for
different time intervals and, in the case of a single step solution (first procedure, see above)
for 1, 2, 3, 4, and 5 time degrees of freedom. In each diagram both the exact solution and the
percentage error are also plotted.
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Example a: viscoelastic beam on elastic support.
The structure is a Bernoulli-Navier built in beam of length 2l, with an elastic support (a spring
of stiffness km) in the middle; the beam is homogeneous and has a constant cross-section. A
uniformly distributed transversal load q is applied at time t0 = 0 and remains constant. The
beam is subdivided into two finite elements of the type described previously.

First, we consider Gurtin’s formulation. After the spatial discretization, Gurtin’s func-
tional takes the following form:

FG =
1

2
km

∫ 2T

0−
v

′

(l, 2T − t) dv
′

(l, t)

+
1

2

[
24J

l3

] ∫ 2T

0−
dv

′

(l, t)

∫ 2T−t

0−
R(2T − t− τ) dv

′

(l, τ)

− l

∫ 2T

0−
q(2T − t) dv

′

(l, t)

(2.4.10)

where v(l, t), the only non-zero δ degree of freedom, is the vertical displacement of the middle
section of the beam.

We start by discussing the results obtained finding the entire solution in a single step.
In Fig. 2.1, the ratio between the displacement v(l, t) of the middle section at time t and the
initial elastic displacement v(l, 0) is plotted. The exact solution of this problem was determined
analytically through the correspondence principle. The time shape functions are of the negative
exponential type (2.4.9) with t∗ = 70, 130 and 180 days, the time 2T ranges from 0 to 1500 days
and the number of time degrees of freedom from 2 to 5. After 750 days, v(l) remains practically
constant over time. The diagrams show that the presented method allows a good interpretation
of the viscoelastic behaviour of the structure. With three time degrees of freedom the solution
is satisfactory within the entire time range.

The accuracy of the numerical results depends on the choices of t∗. In this example, for
t∗ = 130 days very precise results are obtained with just two temporal degrees of freedom. The
optimal determination of t∗ remains an open problem.
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Figure 2.1: Example a: Beam on elastic support. Numerical results using Gurtin’s formulation.
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Fig. 2.2 shows the numerical results obtained by splitting the loading time interval 2T =
1500 days into two equal parts and using the split Gurtin’s formulation (2.3.27). After the
spatial discretization, functional (2.3.28) takes the following form:

F SG =
1

2
km

∫ T

0−
v

′

2(l, 2T − t) dv
′

1(l, t)

+
1

2
km

∫ 2T

T

v
′

1(l, 2T − t) dv
′

2(l, t)

+
1

2

[
24J

l3

] ∫ T

0−
dv

′

1(l, t)

∫ T

0−
R(2T − t− τ) dv

′

1(l, τ)

+
1

2

[
24J

l3

] ∫ T

0−
dv

′

1(l, t)

∫ 2T−t

T

R(2T − t− τ) dv
′

2(l, τ)

+
1

2

[
24J

l3

] ∫ 2T

T

dv
′

2(l, t)

∫ 2T−t

0−
R(2T − t− τ) dv

′

1(l, τ)

− l

∫ T

0−
q2(2T − t) dv

′

1(l, t)

− l

∫ 2T

T

q1(2T − t) dv
′

2(l, t)

(2.4.11)

Here we have considered from 2 to 5 time degrees of freedom both in the first and in the second
sub-interval. Of course, the accuracy increases significantly in the case of splitting, due to a
doubling of the degrees of freedom. As it is possible to see in Fig. 2.2, a constant time function
is sufficient to approximate well the solution in the second sub-interval, given the asymptotical
nature of the viscoelastic problem. For this reason, an attempt has been made in reducing
the degrees of freedom in the second subinterval, in order to reduce the computational cost
and to obtain a purely minimum principle. Fig. 2.3 shows the numerical results for the same
example, obtained using nt degrees of freedom on the first sub-interval and (nt−1) time degrees
of freedom on the second one. It is noted that the solution in the first sub-interval significantly
worsens compared to the case of an equal number of degrees of freedom in both sub-intervals.

Fig. 2.4 shows the case of (nt − 2) degrees of freedom in the second sub-interval: the
solution in the first sub-interval further deteriorates respect to the case of (nt − 1) number
of degrees of freedom in the second sub-interval. To understand the reason for this strange
behaviour, considering that just one degree of freedom is enough to obtain a good approximation
in the second sub-interval, the exact solution in the second sub-interval was replaced in the
functional, thus reducing the variational problem to a minimum problem only in the first sub-
interval. The obtained numerical result implies v1(l) becoming unbounded.

This strong instability can be explained by analysing the equation obtained by imposing
the stationarity of the functional, that is:

∫ T

0−
R(2T − t− τ) dv(l, τ) = f(t) (2.4.12)

or, in operatorial form:
Av = f (2.4.13)

with f(t) the known term obtained by the sum of the original known term and the one resulting
from the integral on the second sub-interval.
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Figure 2.2: Example a: Beam on elastic support. Numerical results using split Gurtin’s for-
mulation with same number of time degrees of freedom in the first and in the second time
sub-interval.
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Figure 2.3: Example a: Beam on elastic support. Numerical results using split Gurtin’s for-
mulation with n degrees of freedom in the first sub-interval and (n − 1) DoF in the second
sub-interval.
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Figure 2.4: Example a: Beam on elastic support. Numerical results using split Gurtin’s for-
mulation with n degrees of freedom in the first sub-interval and (n − 2) DoF in the second
sub-interval.
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The equation Av = f is called well-posed or properly posed if A is bijective and the
inverse operator A−1 is continuous. In fact, Hadamard postulated three requirements for a
problem to satisfy in order to be well posed:

1. existence of a solution;

2. uniqueness of a solution;

3. continuous dependence of the solution on the data.

Otherwise the equation is called ill-posed or improperly posed. Our operator A is not surjective,
then equation Av = f is not solvable for all f (nonexistence), and A is also not injective, so
that the equation may have more than one solution (nonuniqueness).

In general, linear integral equations of the first kind with continuous (as in our case) or weakly
singular kernels provide typical examples of ill-posed problems.

One of the fundamental facts in the theory of operatorial equations of the first kind is
that the inverse of a completely continuous operator is not bounded. So, even if fa and fb
are two mutually close elements in a Hilbert space and both equations Av = fa and Av = fb
are solvable, the respective solutions va = A−1fa and vb = A−1fb can differ strongly from each
other. Therefore, a small difference in the known term of the starting equation can lead to a
large error in the solution (see, for instance, Kress, 1989).

The ill-posed nature of an equation, of course, has consequences on its numerical treat-
ment. The fact that an operator A does not have a bounded inverse means that the condition
numbers of its finite dimensional approximations grow with the quality of the approximation.
This means that increasing the accuracy of the approximation for the operator A will cause the
approximate solution to the equation to become less and less reliable.

To at least partially mitigate these instabilities, a Tikhonov “regularization” was consid-

ered (see, for example, Kress, 1989). A regularizing “penalty” term 1
2
α
∫ T

0−
v

′2
(l, t) dt, dependent

on a parameter α, has therefore been added to the functional (2.4.11). This means replacing
the given equation of the first kind with the following equation of the second kind:

αv(l, t) +

∫ T

0−
R(2T − t− τ) dv(l, τ) = f(t). (2.4.14)

The choice of α is very important but linked in general to great difficulties, and we made it
by trial and error. The results of this regularization, shown in Fig. 2.5, is not very satisfac-
tory. Fig. 2.6 shows the regularized result obtained by adding the modified quadratic term
1
2
α
∫ T

0−
v

′2
(l, 2T − t) dt to the functional (2.4.11). In this case a good result is obtained by using

two temporal degrees of freedom and α = 0.007925.
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Figure 2.5: Example a: Beam on elastic support. Numerical results using a Tikhonov regular-

ization with the addition of 1
2
α
∫ T

0−
v

′2
(l, t) dt to functional (2.4.11) (t∗ = 130 days, α = 0.05).

Figure 2.6: Example a: Beam on elastic support. Numerical results using a Tikhonov regu-

larization with the addition of 1
2
α
∫ T

0−
v

′2
(l, 2T − t) dt to functional (2.4.11). (t∗ = 130 days,

α = 0.007925 for 2 DoF; α = 0.06594 for 3 DoF; α = 0.29431 for 4 DoF; α = 1.40348 for 5
DoF).
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Let us now analyse the behaviour of Huet’s formulation.
Because of the theoretical restrictions summarized in Section 3, Huet’s formulation does

not work numerically if applied in a single loading step, unless during the step the solution tends
to becomes constant. For this reason, in the next examples we have considered step-by-step
procedures only, with a reasonably large number of time steps.

Once again because of the same theoretical restrictions, standard step-by-step techniques,
in the case of Huet’s formulation, become rapidly unstable with an increasing number of time
degrees of freedom in a single time step: actually, they seem to work only by adopting a single
time degree of freedom in each step. By standard we mean a procedure in which (i) the time
integrals are computed only on the current time step and (ii) the initial conditions at each time
step are the end conditions at the previous time step.

Nevertheless, considering the convolutive nature of the involved functionals, one is lead
to adopt non standard step-by-step procedure in which (i) all the time integrals are computed
starting from the global loading initial time t = 0, and (ii) the time interpolation functions are
defined as the sum of Heaviside step functions, each starting at the beginning of a new time
step. In this way, the degrees of freedom can be obtained in a simple recursive form and the
solution seems to be more accurate with respect to a standard one with the same numbers of
unknowns. This happens because in this way the past history is “remembered”. In the sequel,
we will apply this idea also to Gurtin’s approach.

Since the integrals in Huet’s functional are defined between 0 and T , in this case the
solution must be found in this interval only. The time interval [0, T ] is subdivided into n
temporal subintervals defined by the sequence of instants T0, T1, ..., Ti, ..., Tn = T . The analysis
is carried out in sequence in the intervals T0 ≤ t ≤ T1, T0 ≤ t ≤ T2, etc., always assuming, as
initial conditions, the conditions at the initial time t = 0.

Following this idea, all the time interpolation functions used in the previous steps are
prolonged to the current temporal step by means of the Heaviside function. This means that
the approximating function at the step Ti−1 − Ti is represented using a sum of step time
interpolation functions (see Fig. 2.7)

v
′

(l, t) =
i∑

n=1

anH(t− Tn−1), Ti−1 ≤ t ≤ Ti (2.4.15)

with a1, ..., ai−1 already known from the previous steps. The time marching procedure starts
from the initial time, adding a new interpolation function to each step. By imposing the
stationarity of the Huet functional, rewritten for the example here studied and for time interval
T0 ≤ t ≤ Ti

FH(v
′

(l, t, Ti)) =
1

2
kmv

′2
(l, Ti) +

1

2

[
24J

l3

] ∫ Ti

0−

∫ Ti

0−
R(2Ti − t− τ) dv

′

(l, τ) dv
′

(l, t)

− l

∫ Ti

0−
q(2Ti − t) dv

′

(l, t)

(2.4.16)

and making t → Ti, we go back to the starting equation (see Section 3.3). Using (2.4.15) as an
admissible function, we obtain:

an =
q (2Tn − Tn−1) l −

∑n−1
i=1 ai [(24J/l

3)R (2Tn − Ti−1 − Tn−1) + km]

(24J/l3)R (2Tn − 2Tn−1) + km
, n ≥ 2. (2.4.17)

Fig. 2.8 shows the results from 0 to 750 days for t → Ti, and, as a test, t → Ti−1 + ∆Ti/2,
t → Ti−1 +∆Ti/4, t → Ti−1 +∆Ti/8, t → Ti−1 (with ∆Ti = Ti − Ti−1).
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Surprisingly, the best results are obtained for t → Ti−1 +∆Ti/4 and not for t → Ti, as instead
explained by the theory summarized in Section 3.3. In Figures 2.9, 2.10, and 2.11 the results
obtained using both the Huet formulation and the Gurtin formulation (now used with the same
non standard step-by-step procedure) are reported for a constant load, for a load that varies
linearly over time and for a load that varies sinusoidally over time, respectively. It should be
noted that with Gurtin’s formulation one has not the problem of finding an optimal t.
Gurtin’s results can be derived from the following formula:

an =

l ·
∫ Tn

Tn−1

q(t) dt− (24J/l3) ·
n−1∑

i=1

ai ·
∫ Ti

Ti−1

∫ T1

0

∂R(Tn − t− τ)

∂(Tn − t− τ)
dτ dt

(24J/l3 + km) · (Tn − Tn−1) + γ ·
∫ Tn

Tn−1

∫ Tn−t

0

∂R(Tn − t− τ)

∂(Tn − t− τ)
dτ dt

(2.4.18)

and they are slightly better than Huet’s results for the first two cases while they are slightly
worse for the last case.

Figure 2.7: Example a: Beam on elastic support, non standard step-by-step procedure. Step
time interpolation functions.
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Figure 2.8: Example a: Beam on elastic support. Numerical results using step time interpola-
tion functions in the case of constant load.
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Figure 2.9: Example a: Beam on elastic support. Numerical results using step time interpola-
tion functions in the case of constant load, using Huet’s formulation and Gurtin’s formulation.
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Figure 2.10: Example a: Beam on elastic support. Numerical results using step time interpo-
lation functions in the case of load q linearly varying over time, using Huet’s formulation and
Gurtin’s formulation.
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Figure 2.11: Example a: Beam on elastic support. Numerical results using step time interpo-
lation functions in the case of load q sinusoidally varying over time, using Huet’s formulation
and Gurtin’s formulation.
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Example b: cable-stayed bridge.
The structure (Fig. 2.12) represents a simple cable stayed bridge. The girder and the piers are of
concrete with geometrical and rheological properties constant along the axis; the stays are made
of steel. The uniform load q is applied on the girder at time t0 = 28 days and remains constant in
time. The structure is discretized with seven beam elements having the characteristics shown in
Fig. 2.12. The reference solution is obtained with the program ABAQUS (ABAQUS Manuals,
2018).

Once again, the solution is here found in a single time step. Negative exponential time
interpolation functions are used, as in the first solutions of the previous example. The results
obtained in Carini, Gelfi, Marchina (1995), using the same interpolation functions, are com-
pared with the present ones and, therefore, as in that work, t∗ = 120 days is taken. Physical
phenomena start at 28 days because the structure is designed in reinforced concrete. Two and
three temporal degrees of freedom are considered. The numerical results, using Gurtin’s ap-
proach, are reported in Fig. 2.13 for three distinct time intervals: 28-100, 28-1000 and 28-10000
days. Fig. 2.13 also shows the reference solution obtained with the ABAQUS program with a
considerable degree of precision and, therefore, to be considered “exact” from an engineering
point of view. As can be seen, the approximate solution is already good with only two temporal
degrees of freedom over the entire time interval analysed, showing errors lower than 5% almost
everywhere.

Fig. 2.14 shows the results obtained with the split Gurtin’s formulation and the same
interpolation functions. The results are not very different from those obtained with the un-
split Gurtin’s formulation, in spite of a doubling of the unknowns. Table 2.2 compares the
conditioning indexes of the matrices of the coefficients of the resolving systems in the case of
use 1) of the least squares method, 2) of the method based on Tonti’s extended functionals, 3)
of Gurtin’s method. The results related to the least square method and to the Tonti method
are taken from Carini, Gelfi, Marchina (1995). The results with 1 or 2 temporal degrees of
freedom, obtained by the different methods, are comparable to each other. It is noted that the
conditioning index of Gurtin’s method is of the same order of magnitude as that associated to
Tonti’s extended functional, orders of magnitude lower than the method of least squares. Fur-
thermore, the Gurtin method is much less expensive because it does not require the inversion
of the elastic operator, as necessary in the case of Tonti’s extended functional where the inverse
of the elastic operator acts as a preconditioning operator.

The conditioning indexes related to the split Gurtin method are similar to those of the
unsplit Gurtin method, except for the case related to the interval 28-10000 days and for 2
and 3 degrees of freedom where the conditioning index jumps to very high levels. Using time
interpolation functions that are still negative exponential but with different relaxation times
(10 t∗ and 100 t∗ for the second and third degrees of freedom, respectively) yielded conditioning
indices comparable to those for the Gurtin approach (see the last column of Table 2.2).
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Figure 2.12: Example b: Cable-stayed bridge (a) - Finite Element mesh (b), beam finite element
(c), geometrical properties and rheological properties (d).
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Figure 2.13: Example b: Cable-stayed bridge. Numerical results using Gurtin’s approach.
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Figure 2.14: Example b: Cable-stayed bridge. Numerical results using the split Gurtin’s ap-
proach.
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2T
(days)

Time
d.o.f.

Conditioning index
Least
square

Extended
functional

Gurtin
Split
Gurtin

Split
Gurtin*

1 1.555× 107 3.635× 103 4.032× 103 5.638× 103

28-100 2 7.389× 108 2.118× 105 4.655× 105 2.735× 106 2.459× 107

3 2.705× 109 2.328× 107 1.049× 1010 2.367× 1011 2.542× 1013

1 5.944× 106 2.248× 103 3.117× 103 3.681× 103

28-1000 2 2.195× 108 1.051× 105 2.350× 105 5.640× 106 3.361× 105

3 1.715× 1010 4.932× 106 1.112× 106 1.158× 108 9.123× 108

1 8.891× 106 2.064× 103 3.001× 103 3.058× 103

28-10000 2 2.695× 109 1.001× 106 2.095× 107 5.969× 1024 3.878× 107

3 5.796× 1012 8.667× 107 1.754× 109 6.036× 1036 1.537× 108

L̃Lu

= L̃b
〈·, ·〉 standard

L̃KLu

= L̃Kb
〈·, ·〉 standard

Lu = b
〈·, ·〉c

Shape functions





Least square/Extended functional [1 , e−t/t∗ , e−2t/t∗ ]

Gurtin′s/Split Gurtin′s functional [1 , e−t/t∗ , e−0.1t/t∗ ]

∗Split Gurtin′s functional

{
1st subinterval [1 , e−t/t∗ , e−0.1t/t∗ ]

2nd subinterval [1 , e−0.1t/t∗ , e−0.01t/t∗ ]

Table 2.2: Cable-stayed bridge. Conditioning indexes of the coefficient matrixes.

Example c: reinforced cylinder under internal pressure.
With this example we want to test the effectiveness of Gurtin’s approach in the case of more
complex geometry and load history. In this example a plane strain cylinder of viscoelastic
material is surrounded by a steel casing and subjected to an internal pressure history. Shown
in Fig. 2.15 are the geometric dimensions of the solid (2.15a), the mechanical properties of
the materials (2.15b) (the material properties are assumed as in Zienkiewicz et al. (1968)), the
used finite element mesh (2.15c). In particular, a quarter of cylinder is subdivided in 48 four
nodes isoparametric finite elements, with 63 total nodes for the assembled structure, and two
load histories; the first one (2.15d) is a pressure suddenly applied at time t=28 days and then
held constant over time, the second (2.15e) is a pressure suddenly applied at time t=28 days,
held constant for 100 days, suddenly doubled for the next 100 days and then suddenly removed.
The reference solution has been obtained analytically through the correspondence principle.

Using Gurtin’s approach, and with reference to the pressure history (2.15d), in Fig. 2.16
the radial displacements (calculated in correspondence of two representative nodes) with the
relevant percentage errors are plotted while the variation of radial stress and variation of the
tangential stress (calculated in correspondence of two points inside two representative finite
elements) are plotted in Fig. 2.17. Table 2.3 reports the conditioning indexes of the coefficient
matrices. Figure 2.18 shows the results obtained with Gurtin’s formulation in the case of the
more complex loading history (2.15e). The results were obtained by solving the problem in
three time steps, adopting a variation of the non standard step-by-step procedure described
earlier. In the case of the three loading steps, in the first step the solution for the first 100 days
was calculated. Then the solution for 100 more days was calculated using the functional for
the first 200 days and using the solution already found in the first interval.
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Finally, the solution was found in the third interval, between 228 and 328 days by considering
the functional over the entire time interval, starting at 28 days and using the solution already
found in the first two intervals. Basically, a step-by-step procedure was used with large time
steps and using two temporal degrees of freedom for each step, only. As shown in Fig. 2.18,
Gurtin’s approach leads to very good results with low computational cost.

Figure 2.15: Example c: Reinforced cylinder under internal pressure (a), Geometrical properties
and rheological properties (b), Finite Element mesh (c), First load history (d), Second load
history (e).
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Figure 2.16: Example c: Reinforced cylinder under suddenly applied constant internal pressure.
Radial displacements plots.
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Figure 2.17: Example c: Reinforced cylinder under suddenly applied constant internal pressure.
Radial and tangential stress plots.
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Figure 2.18: Example c: Reinforced cylinder under internal pressure depicted in fig. 2.15e.
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No. of time Conditioning index
2T (days) degrees of freedom Gurtin’s functional

1 9.4777× 105

28-38 2 3.2489× 108

3 2.6005× 1013

1 1.6799× 106

28-78 2 3.3209× 107

3 3.8077× 1010

1 2.4283× 106

28-228 2 1.5416× 108

3 8.1938× 108

Lu = b
〈·, ·〉c

Table 2.3: Reinforced cylinder under suddenly applied constant internal pressure: conditioning
indexes of the coefficient matrices.

2.5 Conclusions

To the authors’ knowledge, no significant work seems to exist in the literature concerning the
use of variational formulations for the numerical solution of the linear viscoelasticity prob-
lem. In particular, variational principles based on convolutional bilinear forms with respect to
time do not seem to have had any place so far in computational procedures for the numerical
determination of the viscoelastic response of solids or structures subject to external actions.
This Chapter aims at investigating the effectiveness of numerical procedures based on these
variational formulations.

Three variational formulations for the linear viscoelastic problem are critically reviewed
and numerically tested with the purpose of investigating their effectiveness in the numerical
solution of viscoelastic problem. Numerical examples with reference to hereditary Kelvin-Voigt
and Maxwell material model are presented.

In the case of finding the viscoelastic solution over a finite time interval in a single step,
Gurtin’s formulation works well in the sense that the numerical solutions are obtained with er-
rors lower than 5%, using only two or three temporal degrees of freedom; by carefully choosing
the temporal interpolation functions, Gurtin’s formulation leads to numerical results compara-
ble to those obtained with Tonti’s “extended” variational formulation in terms of accuracy, but
with lower computational costs.

With Gurtin’s formulation, the results are more sensitive to the choice made of interpo-
lation functions over time. Polynomial interpolation functions are appropriate only for short
time intervals. The interpolation functions that have given the best results are the negative
exponential functions because they capture well the typically damped trend of the viscoelas-
tic solution. The conditioning indexes are comparable to those obtained with the “extended”
Tonti’s formulation. In the case of using the Gurtin formulation in a step-by-step procedure,
the results are comparable to those obtained with a traditional time integration technique.

The split Gurtin formulation gives good results only for an equal number of degrees of
freedom in the first and second time sub-interval. For a lower number in the former there is no
solution while for a lower number in the latter there arise numerical instabilities that, in the
worst cases, are difficult to overcome even with the help of a Tikhonov regularization. From
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the numerical point of view it does not seem to provide any improvement over the unsplit
formulation. In any case, the doubling of unknowns makes the method less competitive than
the unsplit Gurtin’s method. The split Gurtin functional, however, could have advantages from
the theoretical point of view, as shown in Carini and Mattei (2015). In fact, the formulation
is of the min-max type and, by the adopted time splitting, one is able to isolate a part of the
functional that represents the free energy of the system and is, therefore, in general, semidefinite
positive.

In the case of the Gurtin and split Gurtin functionals, the problem of the optimal choice
of the relaxation time to be used in the negative exponential interpolation functions remains
unsolved.

Huet’s formulation, in general, can provide a wrong solution. It provides the true solution
only under very restrictive assumptions, as in the case of integration times long enough for
the solution to have become constant, but even in these cases the formulation has numerical
instabilities similar to those presented by the split Gurtin formulation. Huet’s formulation
works well only for short time intervals embedded in a standard step-by-step procedure. From
a theoretical point of view it is interesting because the quadratic part of the functional has the
physical meaning of a free energy.

In conclusion, of the three formulations presented here and numerically tested, Gurtin’s
original formulation seems to be the most effective in numerically solving the linear hereditary
viscoelastic problem.
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Chapter 3

Variational principles and numerical
integration methods for the heat
conduction problem

Notation

Greek and latin letters

• Ω: Region occupied by a solid body;

• V : Volume of the solid body;

• Γ: External surface of the solid body;

• ni(xr): Unit outward normal vector components;

• xr, r = 1, 2, 3: Cartesian coordinates;

• θ(xr, t): Temperature field;

• qi(xr, t): Heat flux vector components;

• [0, 2T ]: Time interval;

• Γq: Loaded region of the boundary;

• θ̄(xr, t): Prescribed temperatures;

• q̄i(xr, t): Prescribed heat flux vector components;

• k(xr): Thermal conductivity;

• γ(xr): Specific heat;

• ρ(xr): Mass density;

• a(xr, t): Rate of heat production per unit volume;

• Γθ: Constrained region of the boundary;

• r(t): Function for the biconvolutive bilinear form;
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• le: Length of the finite element;

• α: Vector of the degrees of freedom;

• βi: Vector of the time degrees of freedom;

• mi: Vector of time shape functions;

• L: Length of the rod;

• A: Cross-sectional area.

Symbols

• =:: Is defined as;

• ∗: Convolution product;

• ◦: Convolution product over half time range;

•
′: Admissible term;

• 1: Variable defined over the first subinterval;

• 2: Variable defined over the second subinterval;

• ⊆: Is included in;

• ⊇: Includes.

Operators and functions

• /i : Partial derivative operation;

• :̇ Derivation with respect to the time variable;

• I: Identity Operator;

• 〈 , 〉c: Convolutive bilinear form;

• 〈 , 〉cc: Biconvolutive bilinear form;

• F
G: Gurtin’s functional;

• F
SG: Split Gurtin functional;

• H(t): Heaviside function.
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3.1 Introduction

This Chapter starts from the theories and results obtained in the previous Chapter and it aims
at the numerical use of variational principles applied on the heat conduction problem.

In the past, many attempts were carried out to provide variational formulations, espe-
cially of extremum type, also for the heat conduction problem. The research of variational
formulations led to a variety of quasi-variational principles (or weak forms) and restricted vari-
ational principles, where the adjective ”restricted” refers to the fact that certain variables are
kept constant during the variation process. For example, Rosen (1953) formulated a variational
principle for diffusional processes, modifying Osanger’s principle of minimum dissipation, hold-
ing the temperature field fixed.

Glansdorff and Prigogine (1964,1965) extended the theorem of minimum entropy produc-
tion to obtain a universal evolution criterion, valid in the whole range of macroscopic physics,
deriving local potentials which open the way to the use of variational techniques.

Gyarmati (1969) derived a universal form of the integral principle of thermodynamics,
whose validity could be extended to certain types of non-linear problems, and discussed its
relation to Vojta’s functional variational principle.

Finlayson (1983) obtained a series of variational principles (based on a functional, or not)
for heat conduction problems.

According to Biot (1970), by introducing a new vector field called by Biot himself the
“heat displacement vector”, one can rewrite the heat equation in a canonical form, which
corresponds to a variational principle involving the potential and the thermal dissipation of the
system. According to Biot’s analysis, such a principle may be considered similar to d’Alembert’s
thermodynamic principle of analytical mechanics. In fact, many of the variational principles
proposed in the past for the heat conduction problem were inspired by similar principles put
forward for problems of analytical mechanics, such as Hamilton’s principle, the principle of
least action, and Gauss’ principle of least constraint (see Levi-Civita and Amaldi, 1927).

For example, in Vujanovic’s work (1971,1974), with the aim to formulate a variational
principle of Hamilton’s type, the conduction problem (parabolic) is transformed into a hyper-
bolic one, depending on one parameter. This is achieved by adding, to the original equation, a
term including the second time derivative and depending on a parameter. The original equation
is re-obtained when the parameter goes to zero in the first variation, set equal to zero. It should
be noted that the parameter has a clear physical interpretation: it is related to the relative
speed of the heat wave (see Cattaneo, 1948). Changes to such a variational principle have been
proposed: the parameter may be replaced by a “vanishing” function (Djukic and Vujanovic,
1971, who defined the so-called “DV method”, Vujanovic, 1976a, Schlup, 1975).

The principle analogue to that of the least action is based on the abandonment of the
well-known rule: the variation of the derivative is equal to the derivative of the variation and on
the consideration of non-commutative derivation rules to include non-conservative dynamical
systems. Atanackovic, in a series of papers (1977, 1978, 1980, 1983), gave an interpretation to
the variational principle with non-commutative laws in terms of directional Gateaux derivatives.
Namely, the Gateaux derivative of the conservative part of the action integral vanishes for a
certain set of directions. He also examinates the conditions which ensure the existence of a
local minimum of the functional used in a variational principle with non-commutative rules
(the second Gateaux derivative must be positive).

Also the method of least squares, inspired by Gauss’ principle of least constraint, has been
widely used for the initial value problems and, in particular, for the elastodynamic problem and
for the heat conduction problem. The problem is reduced to the algebraic minimization of a
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quadratic form with respect to some physical parameters. See, for example, Vujanovic (1976b),
Vujanovic and Baclic (1976), Vujanovic and Atanackovic (1978) and Djukic and Atanackovic
(1981).

An extension of the method of least squares was proposed by Tonti (1984) with the so-
called extended variational principles, based on the choice of a bilinear form with respect to
which a suitable “integral operator” is symmetric and positive definite. Regardless, Ortiz (1985)
used a similar method to provide a variational formulation to the convection-diffusion problem,
minimizing the weighted residuals of the solution uniformly. Furthermore, a generalization of
Tonti’s approach to the case of non-differentiable operators has been established by Auchmuty
(1988, 1993).

A variational formulation valid simultaneously for the given problem and the adjoint
problem was provided by Morse and Feshback (1953). By using this method it is always
possible to rephrase any linear problem in a variational way, considering that the method of the
formally self-adjoint operators cannot be applied when the operator is not at least self adjoint.
This method considers, alongside with the original initial value problem, another artificial
one governed by the adjoint operator, therefore with final conditions. The use of the adjoint
operator, whether explicitly or implicitly, inspired a significant number of papers, especially
for diffusion problems. Nevertheless, justifying the attachment of the adjoint problem from a
physical point of view constitutes a great issue. Herrera (1974) found two extreme principles for
the heat equation which were then extended (Herrera and Bielak, 1976) to diffusion problems.
In these works, Herrera also uses the solution of the adjoint problem on a given time interval
and introduces functions either even or odd in time with respect to the midpoint of the time
interval used. He derives a functional which is minimum over a set of constraints and maximum
with respect to a second set thereby obtaining dual extremum principles.

Subsequently, Collins (1977), using Herrera’s ideas, has derived dual complementary vari-
ational principles in which explicit use of the adjoint equation and the extremum principles are
used to obtain bounds of quantity of interest for the heat equation. Bivariational bounds, based
on the use of the adjoint equation, were obtained by Barnsley and Robinson (1974, 1975), and
Cole (1980).

The first true variational formulation dates back to Gurtin’s work (1964). It is based on
the use of convolution integrals and it is valid for a large class of linear time-dependent problems,
including the heat conduction problem. Gurtin’s idea consists of a preliminary transformation
of differential equations into integro-differential equations with convolutive integrals. Filippov
and Skorokhodov (1977), for a one-dimensional problem, provided a functional involving spatial
integrals rather than time integrals.

Gurtin’s method has then been simplified by Tonti (1973) who, with the introduction
of a convolutive bilinear form, prevents the transformation of the differential problem into an
integro-differential one. Magri (1974) generalizes the results of Gurtin and Tonti, providing
an infinite number of bilinear forms, dependent on a symmetric kernel function, with respect
to which the problem of heat conduction is symmetric, thus admits a variational formulation.
The convolutive bilinear form was also used to obtain variational formulations in space and
time for the heat conduction problem written in terms of boundary integral equations (Carini,
Diligenti, Maier, 1991; Carini, Diligenti, Salvadori, 1999).

Rafalski (1969) has the merit of having obtained extremal formulation for linear problems
with initial values. The limit of his results is that it is necessary to study the whole story, from
the time of the initial assignment of data to infinity. The work of Rafalski was later perfected by
Reiss and Haug (1978), who formulated extremal principles for problems with initial values and
who explored the possibility of finding those functionals which return an extremum principle
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for linear initial value problems.
The Chapter is organized as follows. In Subsection 2, the linear transient heat conduction

problem is introduced. In Subsection 3 two bilinear forms will be defined (the convolutive
bilinear form and the biconvolutive bilinear form) and two stationarity principles are derived.
In Subsection 4 a splitting of the time integration interval is performed and several extremal
principles are obtained. In Subsection 5, by using the finite element method in space and
the Ritz method in time, a discretized formulation is applied and the behaviour of a finite
rod with superimposed temperature at its ends and of finite square element with null initial
temperature, a prescribed temperature at its boundary and with no heat generation within the
solid is analysed. In Subsection 6, conclusions and open issues are discussed, therefore a list of
references is presented.

3.2 The linear transient heat conduction problem

Consider a solid body Ω ⊂ R
3, with volume V and external surface Γ with unit outward normal

ni(xr).
An orthogonal Cartesian reference system is used, with coordinates xr, r = 1, 2, 3. The com-
ponents of vectors, second order and fourth order tensors are indicated with the usual indicial
notation. Einstein’s convention over repeated indices is adopted, for which when an index vari-
able appears twice in a single term and is not otherwise defined, it implies summation of that
term over all the values of the index.

The constituent material is supposed to be thermally isotropic, i.e., when a point xr is
heated, the heat spreads out equally well in all directions. Furthermore, the material might
be thermally inhomogeneous, i.e., the conditions of conduction may be different from point to
point.
The purpose of the present work is to describe the temperature field θ(xr, t) and the heat flux
qi(xr, t), at the point xr ∈ Ω, at the time t ∈ [0, 2T ] with T > 0.
The body is undisturbed for t < 0; in particular, suppose that the body is in a steady state
of conduction for t < 0, i.e. the temperature difference driving the conduction is constant and
the spatial distribution of the temperature in the region Ω does not change any further in time,
with θ(x, t) = θ0(x) for every x ∈ Ω and for t < 0.
The constitutive law, that relates the heat flux qi(xr, t) to the temperature θ(xr, t) may be
written as follows:

k(xr) · pi(xr, t)− qi(xr, t) =0 (3.2.1)

where k(xr) is the thermal conductivity in Jm−1s−1K−1 and pi(xr, t) is derived from the defi-
nition equation:

−∂θ(xr, t)

∂xi

− pi(xr, t) = 0 (3.2.2)

The latter equation (3.2.2) asserts that the vector pi(xr, t) is the opposite in sign to the tempera-
ture gradient. By combining equations (3.2.1) and (3.2.2), one obtains the following well-known
equation:

qi(xr, t) =− k(xr) ·
∂θ(xr, t)

∂xi

(3.2.3)

derived by Fourier in 1822 by observing that heat transfer is in the direction of decreasing
temperature.
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The equilibrium equations in terms of temperature is:

γ(xr)ρ(xr) ·
∂θ(xr, t)

∂t
− ∂

∂xi

(
k(xr) ·

∂θ(xr, t)

∂xi

)
= a(xr, t) in Ω× [0, 2T ]

k(xr) ·
∂θ(xr, t)

∂xi

· ni(xr) = q̄(xr, t) on Γq × [0, 2T ]

(3.2.4)

where γ(xr) is the specific heat in JK−1kg−1 depending upon the position within the body,
ρ(xr) is the mass density in kg m−3 of the material and the given function a(xr, t) represents
the rate of heat production per unit volume in Jm−3s−1.
When the range of temperature is limited, as supposed in the present Chapter, the dependence
upon θ(xr, t) can be neglected and k(x) can be considered constant. The balance equation
(3.2.4a) is prototypical example of a parabolic partial differential equation and it represents the
principle of energy conservation applied to a differential control volume through which energy
transfer is exclusively by conduction.

The balance, definition and constitutive equations are equipped with the boundary con-
ditions reported below. On the portion Γθ of the boundary Γ (Γ = Γθ ∪ Γq, Γq and Γθ being
complementary parts of Γ (Γθ∩Γq = ∅)), the surface temperature θ(x, t), that may be constant
or a function of time, or position, or both, is assigned, that is

θ(x, t) = θ(x, t) on Γθ × [0, 2T ] (Dirichlet boundary condition) (3.2.5)

whereas on Γq the flux of heat q(x, t) across the surface is prescribed:

q(x, t) = qi(x, t)ni(x) = q(x, t) on Γq × [0, 2T ] (Neumann boundary condition) (3.2.6)

where ni(x) is the outward-drawn unit normal and q(x, t) is the given flux.
For simplicity, we do not consider the “linear radiation boundary condition” for which

the flux across the surface is proportional to the temperature difference between the surface
and the surrounding medium. We do not consider non-linear boundary conditions either, such
as the “black-body radiation”, for which the fourth power of the temperature field is prescribed
on the boundary, or the “natural convection”, regarding powers of the temperature field close
to 5.4 (see Carslaw and Jaeger (1959)).

Finally, the initial condition reads

θ(x, t) = θ0(x) in Ω, t = 0 (3.2.7)

For the sake of simplicity, throughout the following the dependence upon the variable
x = (xi)i=1,2,3 will be omitted, unless strictly required.

The heat conduction problem can be written in a three-fields operatorial form, as follows



γρ ∂(.)
∂t

0 ∂(.)
∂xi

0 k −I

−∂(.)
∂xi

−I 0







θ
pi
qi


 =




a
0
0


 in Ω× [0, 2T ] (3.2.8)




0 0 −ni

0 0 0
ni 0 0







θ
pi
qi


 =




−q
0

niθ




on Γq × [0, 2T ]

on Γθ × [0, 2T ]
(3.2.9)




γρ 0 0
0 0 0
0 0 0







θ
pi
qi


 =




γρ θ0
0
0


 in Ω, t = 0 (3.2.10)
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with I the identity operator, or, in a compact form, with obvious meaning of the symbols:

MIzI = aI in Ω× [0, 2T ] (3.2.11)

BIzI = gI on Γ× [0, 2T ] (3.2.12)

TIzI = hI in Ω, t = 0 (3.2.13)

or, finally, in the following condensed form:

NIzI = fI (3.2.14)

By eliminating the variable pi(t), one gets the following two-fields operatorial form:

[
−γρ ∂(.)

∂t
−∂(.)

∂xi
∂(.)
∂xi

1
k

] [
θ
qi

]
=

[
−a
0

]
in Ω× [0, 2T ] (3.2.15)

[
0 ni

−ni 0

] [
θ
qi

]
=

[
q

−niθ

]
on Γq × [0, 2T ]
on Γθ × [0, 2T ]

(3.2.16)

[
−γρ 0
0 0

] [
θ
qi

]
=

[
−γρ θ0

0

]
in Ω, t = 0 (3.2.17)

or, in a compact form:

MIIzII = aII in Ω× [0, 2T ] (3.2.18)

BIIzII = gII on Γ× [0, 2T ] (3.2.19)

TIIzII = hII in Ω, t = 0 (3.2.20)

or, finally, in the condensed form:
NIIzII = fII (3.2.21)

At last, consider the following one-field operatorial formulation:

γρ
∂θ

∂t
− ∂

∂xi

(
k
∂θ

∂xi

)
= a in Ω× [0, 2T ] (3.2.22)

−k
∂θ

∂xi

ni = q on Γq × [0, 2T ] (3.2.23)

θ = θ0 in Ω, t = 0 (3.2.24)

where the temperature field must satisfy a priori the boundary condition on Γθ, i.e.

θ = θ on Γθ × [0, 2T ] (3.2.25)

In a compact form, the one-field problem reads:

MIIIzIII = aIII in Ω× [0, 2T ] (3.2.26)

BIIIzIII = gIII on Γ× [0, 2T ] (3.2.27)

TIIIzIII = hIII in Ω, t = 0 (3.2.28)

or, in a condensed form:
NIIIzIII = fIII (3.2.29)
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3.3 Variational formulations for the heat conduction prob-

lem

The operator Ni, i = I, II, III, proves to be symmetric with respect to the following non-
degenerate convolutive bilinear form:

〈z′i,Ni z
′′

i 〉c =
∫

Ω

z′i ∗Mi z
′′

i dΩ +

∫

Γ

z′i ∗Bi z
′′

i dΓ +

∫

Ω

z′i(0)Ti z
′′

i (2T ) dΩ (3.3.1)

where z′i and z′′i are arbitrary vectors, belonging to the domain of Ni, i = I, II, III, and the
symbol ∗ represents the following convolution product with respect to the time variable: given
any two functions f(xr, t) and g(xr, t), the basic convolutive integral (in the sense of Lebesgue)
is defined as:

f(xr, t) ∗ g(xr, t) =

∫ t

0

f(xr, t− τ) g(xr, τ) dτ =

∫ t

0

g(xr, t− τ) f(xr, τ) dτ = g(xr, t) ∗ f(xr, t)

(3.3.2)
Therefore, the compact problem

Ni zi = fi (3.3.3)

with i = I, II, III, proves to be equivalent1 to the following variational formulation:

F
c
i (zi) = stat

z′i

F
c
i (z

′

i) (3.3.4)

where

F
c
i (z

′

i) =
1

2
〈z′i,Ni z

′

i〉c − 〈z′i, fi〉c

=
1

2

∫

Ω

z′i ∗Mi z
′

i dΩ +
1

2

∫

Γ

z′i ∗Bi z
′

i dΓ +
1

2

∫

Ω

z′i(0)Ti z
′

i(2T ) dΩ

−
∫

Ω

ai ∗ z′i dΩ−
∫

Γ

gi ∗ z′i dΓ−
∫

Ω

hi z
′

i(2T ) dΩ

(3.3.5)

z′i being any admissible vector, that is, any vector belonging to the domain of Ni, and zi the
solution of the problem, with i = I, II, III.

Also, the operator Ni, i = I, II, III, proves to be symmetric with respect to the following
non-degenerate biconvolutive bilinear form:

〈z′i,Ni z
′′

i 〉cc =
∫

Ω

z′i ∗ r ∗Mi z
′′

i dΩ +

∫

Γ

z′i ∗ r ∗Bi z
′′

i dΓ +

∫

Ω

z′i(0)Ti z
′′

i (2T ) dΩ (3.3.6)

where z′i and z′′i are arbitrary vectors, belonging to the domain of Ni, i = I, II, III.
The biconvolutive integral is defined as:

f(xr, t) ∗ r ∗ g(xr, t) =

∫ t

0

∫ t−τ

0

r(t− τ − η) r(xr, η) f(xr, τ) dτdt (3.3.7)

where r(t) recalls the relaxation function governing the linear viscoelastic problem.
In the following numerical examples, r(t) will assume different forms.

1The equivalence is guaranteed by the non-degeneracy of the chosen bilinear form on the domain and on the
range of the operator Ni (see Magri (1974), for instance).
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Therefore, the compact problem (3.3.3) proves to be equivalent to the following variational
formulation:

F
cc
i (zi) = stat

z′i

F
cc
i (z

′

i) (3.3.8)

where

F
cc
i (z

′

i) =
1

2
〈z′i,Ni z

′

i〉cc − 〈z′i, fi〉cc

=
1

2

∫

Ω

z′i ∗ r ∗Mi z
′

i dΩ +
1

2

∫

Γ

z′i ∗ r ∗Bi z
′

i dΓ +
1

2

∫

Ω

z′i(0)Ti z
′

i(2T ) dΩ

−
∫

Ω

ai ∗ r ∗ z′i dΩ−
∫

Γ

gi ∗ r ∗ z′i dΓ−
∫

Ω

hi z
′

i(2T ) dΩ

(3.3.9)

z′i being any admissible vector, that is, any vector belonging to the domain of Ni, and zi the
solution of the problem, with i = I, II, III.

Gurtin’s formulation
Gurtin’s functional and Split Gurtin functional are now introduced for the resolution of the
linear transient heat conduction problem.
Gurtin’s formulation leads to a Total Potential Energy type functional (dependant only on the
temperature field). Using the convolutive bilinear form, it assumes the general form:

F
G
c (θ

′) =
1

2

∫

Ω

θ′ ∗ γρ∂θ
′

∂t
dΩ +

1

2

∫

Ω

k
∂θ′

∂xi

∗ ∂θ′

∂xi

dΩ +
1

2

∫

Ω

γρθ′ · θ′(0) dΩ

−
∫

Ω

θ′ ∗ a dΩ +

∫

Γq

θ′ ∗ q̄ dΓ−
∫

Ω

θ′ · γρθ0 dΩ
(3.3.10)

while, using the biconvolutive bilinear form over the time interval [0, 2T ], it assumes the form:

F
G
cc(θ

′) =
1

2

∫

Ω

θ′ ∗ r ∗ γρ∂θ
′

∂t
dΩ +

1

2

∫

Ω

k
∂θ′

∂xi

∗ r ∗ ∂θ′

∂xi

dΩ +
1

2

∫

Ω

(γρθ′ ∗ r) · θ′(0) dΩ

−
∫

Ω

θ′ ∗ r ∗ a dΩ +

∫

Γq

θ′ ∗ r ∗ q̄ dΓ−
∫

Ω

(θ′ ∗ r) · γρθ0 dΩ

=
1

2

∫

Ω

γρθ′ ∗ (r(0)θ′ + ṙ ∗ θ′) dΩ +
1

2

∫

Ω

k
∂θ′

∂xi

∗ r ∗ ∂θ′

∂xi

dΩ

−
∫

Ω

θ′ ∗ r ∗ a dΩ +

∫

Γq

θ′ ∗ r ∗ q̄ dΓ−
∫

Ω

(θ′ ∗ r) · γρθ0 dΩ

(3.3.11)

under the constraints θ(xr, t) = θ̄(xr, t) on Γθ.

3.4 Reformulation of the problem

By decomposing the time domain into two equal subintervals (Section 3.4.1), it is possible to
derive a min-max variational formulation, as shown in Subsection 3.4.2, using the convolutive
bilinear form. And in Subsection 3.4.3, through the use of the biconvolutive bilinear form, a
minimum-stationarity principle is presented, which is later applied to the numerical examples.
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3.4.1 Decomposition of the time domain

In Carini and Mattei (2015) five new variational formulations for the viscoelastic problem are
derived, one of which is of the minimum type. Here, these new formulations are conveniently
interpreted as obtained from the decomposition of the time interval [0, 2T ] into two sub-intervals
([0, T ] and [T, 2T ]) of equal length. Accordingly, the variables of the problem, θ(t), pi(t) and
qi(t), formally double as follows:

θ(t) =

{
θ1(t) for t ∈ [0, T ]
θ2(t) for t ∈ [T, 2T ]

(3.4.1)

pi(t) =

{
p1i(t) for t ∈ [0, T ]
p2i(t) for t ∈ [T, 2T ]

(3.4.2)

qi(t) =

{
q1i(t) for t ∈ [0, T ]
q2i(t) for t ∈ [T, 2T ]

(3.4.3)

Hereafter, the subscript 1 will refer to quantities defined over the time subinterval [0, T ], whereas
the subscript 2 will be used in reference to quantities defined over [T, 2T ].

3.4.2 Min-max variational formulation of Tonti’s type with the con-
volutive bilinear form

With the purpose to provide the expression of the functional Fi, with i = I, II, III, given by
(3.3.5), in terms of the six new variables, let us start considering the case i = I. In particular, let
us begin from the decomposition, over the two time subintervals, of the term

∫
Ω
z′I ∗MI z

′

I dΩ,
the explicit expression of which is

∫

Ω

z′I ∗MI z
′

I dΩ = γρ

∫

Ω

∂θ′

∂t
∗ θ′ dΩ +

∫

Ω

∂q′i
∂xi

∗ θ′ dΩ +

∫

Ω

p′i ∗ k p′i dΩ

− 2

∫

Ω

p′i ∗ q′i dΩ−
∫

Ω

∂θ′

∂xi

∗ q′i dΩ
(3.4.4)

The first integral, involving a partial differentiation with respect to the time variable, may be
split in several ways. Two possible decompositions are:

(a) γρ

∫

Ω

∂θ′

∂t
∗ θ′ dΩ = 2γρ

∫

Ω

∫ T

0

∂θ′(t)

∂t
θ′(2T − t) dt dΩ− C (3.4.5)

(b) γρ

∫

Ω

∂θ′

∂t
∗ θ′ dΩ = 2γρ

∫

Ω

∫ 2T

T

∂θ′(t)

∂t
θ′(2T − t) dt dΩ + C (3.4.6)

where C has the following expression:

C = γρ

∫

Ω

∫ T

0

∂θ′(t)

∂t
θ′(2T − t) dt dΩ− γρ

∫

Ω

∫ 2T

T

∂θ′(t)

∂t
θ′(2T − t) dt dΩ (3.4.7)

By means of an integration by parts, the latter turns into

C = γρ

∫

Ω

θ′2(T ) dΩ− γρ

∫

Ω

θ′(2T ) θ′(0) dΩ (3.4.8)
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Hence, equations (3.4.5) and (3.4.6) become, respectively

(a) γρ

∫

Ω

∂θ′

∂t
∗ θ′ dΩ = 2γρ

∫

Ω

∫ T

0

∂θ′1(t)

∂t
θ′2(2T − t) dt dΩ− γρ

∫

Ω

θ′21 (T ) dΩ

+ γρ

∫

Ω

θ′2(2T ) θ
′

1(0) dΩ (3.4.9)

(b) γρ

∫

Ω

∂θ′

∂t
∗ θ′ dΩ = 2γρ

∫

Ω

∫ 2T

T

∂θ′2(t)

∂t
θ′1(2T − t) dt dΩ + γρ

∫

Ω

θ′22 (T ) dΩ

− γρ

∫

Ω

θ′2(2T ) θ
′

1(0) dΩ (3.4.10)

where the aforementioned notation regarding the subscripts 1 and 2 has been applied. It is
worth noting that other decompositions, different from (3.4.9) and (3.4.10), may be used, but
the ones illustrated above have the advantage of leading to a negative quadratic term in θ1 (see
(3.4.9)) and a positive quadratic term in θ2 (see (3.4.10)), fundamental to enunciate maximum
and minimum variational principles, respectively.

The remaining terms in (3.4.4), not involving differentiation in time, can be decomposed
by simply splitting the time integrals. For instance, the second term in (3.4.4) turns into

∫

Ω

∂q′i
∂xi

∗ θ′ dΩ =

∫

Ω

∫ T

0

∂q′1i(t)

∂xi

θ′2(2T − t) dΩ +

∫

Ω

∫ 2T

T

∂q′2i(t)

∂xi

θ′1(2T − t) dΩ (3.4.11)

Therefore, the following variational principles hold:

F
a
I (θ1, θ2, p1i , p2i , q1i , q2i) = max

θ′1

stat
θ′2,p

′

1i
,p′2i

,q′1i
,q′2i

F
a
I (θ

′

1, θ
′

2, p
′

1i
, p′2i , q

′

1i
, q′2i) (3.4.12)

F
b
I(θ1, θ2, p1i , p2i , q1i , q2i) = min

θ′2

stat
θ′1,p

′

1i
,p′2i

,q′1i
,q′2i

F
b
I(θ

′

1, θ
′

2, p
′

1i
, p′2i , q

′

1i
, q′2i) (3.4.13)

where here and henceforth the superscripts a and b refer, respectively, to decompositions (3.4.9)
and (3.4.10). The expression of functionals F

a
I and F

b
I is not given explicitly for the sake of

brevity.
The same procedure applied to the functional FII leads to the following variational prin-

ciples:
F

a
II(θ1, θ2, q1i , q2i) = min

θ′1

stat
θ′2,q

′

1i
,q′2i

F
a
II(θ

′

1, θ
′

2, q
′

1i
, q′2i) (3.4.14)

F
b
II(θ1, θ2, q1i , q2i) = max

θ′2

stat
θ′1,q

′

1i
,q′2i

F
b
II(θ

′

1, θ
′

2, q
′

1i
, q′2i) (3.4.15)

Finally, for FIII the following results hold:

F
a
III(θ1, θ2) = max

θ′1

stat
θ′2

FIII(θ
′

1, θ
′

2) (3.4.16)

F
b
III(θ1, θ2) = min

θ′2

stat
θ′1

FIII(θ
′

1, θ
′

2) (3.4.17)
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with

F
a
III(θ

′

1, θ
′

2) = γρ

∫

Ω

∂θ′1
∂t

◦ θ′2 dΩ +
1

2

∫

Ω

∂θ′1
∂xi

◦ k∂θ
′

2

∂xi

dΩ +
1

2

∫

Ω

∂θ′2
∂xi

◦ k∂θ
′

1

∂xi

dΩ

−
∫

Ω

θ′1 ◦ a2 dΩ−
∫

Ω

a1 ◦ θ′2 dΩ +

∫

Γq

θ′1 ◦ q2 dΓ

+

∫

Γq

q1 ◦ θ′2 dΓ− γρ

∫

Ω

θ0 θ
′

2(2T ) dΩ + γρ

∫

Ω

θ′1(0)θ
′

2(2T ) dΩ

− 1

2
γρ

∫

Ω

(θ′1(T ))
2
dΩ

(3.4.18)

F
b
III(θ

′

1, θ
′

2) =γρ

∫

Ω

θ′1 ◦
∂θ′2
∂t

dΩ +
1

2

∫

Ω

∂θ′1
∂xi

◦ k∂θ
′

2

∂xi

dΩ +
1

2

∫

Ω

∂θ′1
∂xi

◦ k∂θ
′

2

∂xi

dΩ

−
∫

Ω

θ′1 ◦ b2 dΩ−
∫

Ω

b1 ◦ θ′2 dΩ +

∫

Γq

θ′1 ◦ q2 dΓ

+

∫

Γq

q1 ◦ θ′2 dΓ− γρ

∫

Ω

θ0 θ
′

2(2T ) dΩ +
1

2
γρ

∫

Ω

(θ′2(T ))
2
dΩ

(3.4.19)

where θ′1 and θ′2 are admissible fields, satisfying boundary condition (3.2.5), and the symbol ◦
represents the convolution product restricted to the subinterval [0, T ] or [T, 2T ], e.g.

θ′1 ◦ a2 =
∫ T

0

θ′1(t) a2(2T − t) dt =

∫ 2T

T

θ′1(2T − t) a2(t) dt (3.4.20)

It is interesting to observe that imposing the stationarity of the functionals Fa
i , i = I, II, III,

with respect to θ′1 yields also the following continuity condition:

θ1(T ) = θ2(T ) (3.4.21)

whereas, for the functionals Fb
i , i = I, II, III, the same condition is obtained by imposing the

stationarity with respect to the variable θ′2.
A min-max variational principle can be achieved by considering the sum of the functionals

F
a
III and F

b
III . In effect,

F
c
III = F

a
III + F

b
III =γρ

∫

Ω

∂θ′1
∂t

◦ θ′2 dΩ + γρ

∫

Ω

θ′1 ◦
∂θ′2
∂t

dΩ + 2

∫

Ω

∂θ′1
∂xi

◦ k∂θ
′

2

∂xi

dΩ

− 2

∫

Ω

θ′1 ◦ a2 dΩ− 2

∫

Ω

a1 ◦ θ′2 dΩ + 2

∫

Γq

θ′1 ◦ q2ini dΓ

+ 2

∫

Γq

q1ini ◦ θ′2 dΓ− 2γρ

∫

Ω

θ0 θ
′

2(2T ) dΩ + γρ

∫

Ω

θ′1(0)θ
′

2(2T ) dΩ

− 1

2
γρ

∫

Ω

(θ′1(T ))
2
dΩ +

1

2
γρ

∫

Ω

(θ′2(T ))
2
dΩ

(3.4.22)

is such that the following variational principle holds:

F
c
III(θ1, θ2) = min

θ′2

max
θ′1

F
c
III(θ

′

1, θ
′

2) (3.4.23)
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In particular, the stationarity of the above functional with respect to θ′1 and θ′2 leads, respec-
tively, to

δθ′1F
c
III = 0 ⇒

{
γρ

∂θ′2
∂t

− ∂
∂xi

(
k
∂θ′2
∂xi

)
= a2 in Ω× [T, 2T ]

−k
∂θ′2
∂xi

ni = q2 on Γq × [T, 2T ]
(3.4.24)

δθ′2F
c
III = 0 ⇒





γρ
∂θ′1
∂t

− ∂
∂xi

(
k
∂θ′1
∂xi

)
= a1 in Ω× [0, T ]

−k
∂θ′1
∂xi

ni = q1 on Γq × [0, T ]

θ′1(0) = θ0 in Ω
θ′1(T ) = θ′2(T ) in Ω

(3.4.25)

3.4.3 Split Gurtin’s formulation with biconvolutive bilinear form
and min-stat principle

The splitting of the integration time interval [0, 2T ] will be analysed using only the biconvolutive
bilinear form, for which the typical splitting assumes the form:

〈θ′, θ′〉cc = θ′◦r◦θ′ =
∫ T

0

∫ T

0

r(2T−τ−η) θ′1(τ) θ
′

1(t) dτdt+2·
∫ T

0

∫ 2T−t

T

r(2T−τ−η) θ′2(τ) θ
′

1(t) dτdt

(3.4.26)
Function r(t) is defined as follows:

r(t) :=

∫
∞

0

φ(α)e−α(2d−t) dα (3.4.27)

With φ positive and bounded function and d > T .
Function r(t) recalls the relaxation function governing the linear viscoelastic problem, in case
the relaxation tensor is completely monotonic.
This biconvolutive bilinear form owns the following properties:

θ′1 ◦ ṙ ◦ θ′1 =
∫ T

0

∫ T

0

ṙ(2T − t− τ)θ′1(τ)θ
′

1(t) dτ dt > 0 (3.4.28)

p′1i ◦ r ◦ p′1i =
∫ T

0

∫ T

0

r(2T − t− τ)p′1i(τ)p
′

1i
(t) dτ dt > 0 (3.4.29)

From this new split approach, exploiting symmetry only, Carini and Mattei (2015) were able
to derive several saddle-point formulations, the first of which (of the Total Potential Energy
type) is used in the following Section for the numerical resolution of the problem:

F
SG
cc (θ′1, θ

′

2) =
1

2

∫

Ω

(γρθ′1 ◦ r(0)θ′2 + γρθ′2 ◦ r(0)θ′1) dΩ

+
1

2

∫

Ω

(θ′1 ◦ ṙ ◦ γρθ′1 + θ′1 ◦ ṙ ◦ γρθ′2 + θ′2 ◦ ṙ ◦ γρθ′1) dΩ

+
1

2

∫

Ω

(
k
∂θ′1
∂xi

◦ r ◦ ∂θ′1
∂xi

+ k
∂θ′1
∂xi

◦ r ◦ ∂θ′2
∂xi

+ k
∂θ′2
∂xi

◦ r ◦ ∂θ′1
∂xi

)
dΩ

−
∫

Ω

(θ′1 ◦ r ◦ a1 + θ′1 ◦ r ◦ a2 + θ′2 ◦ r ◦ a1) dΩ

+

∫

Γq

(θ′1 ◦ r ◦ q̄1 + θ′1 ◦ r ◦ q̄2 + θ′2 ◦ r ◦ q̄1) dΓ

−
∫

Ω

(θ′1 ◦ r + θ′2 ◦ r) · γρθ̄0 dΩ

(3.4.30)
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By explicitly expressing the convolutive integrals the former functional becomes:

F
SG
cc (θ′1, θ

′

2) =

∫

Ω

∫ T

0

γρθ′1(t)r(0)θ
′

2(2T − t) dtdΩ

+
1

2

∫

Ω

∫ T

0

γρθ′1(t)

∫ T

0

ṙ(2T − t− τ)θ′1(τ) dτdtdΩ

+

∫

Ω

∫ T

0

γρθ′1(t)

∫ 2T−t

T

ṙ(2T − t− τ)θ′2(τ) dτdtdΩ

+
1

2

∫

Ω

k

∫ T

0

∂θ′1(t)

∂xi

∫ T

0

r(2T − t− τ)
∂θ′1(τ)

∂xi

dτdtdΩ

+

∫

Ω

k

∫ T

0

∂θ′1(t)

∂xi

∫ 2T−t

T

r(2T − t− τ)
∂θ′2(τ)

∂xi

dτdtdΩ

−
∫

Ω

∫ T

0

θ′1(t)

∫ T

0

r(2T − t− τ)a1(τ) dτdtdΩ

−
∫

Ω

∫ T

0

θ′1(t)

∫ 2T−t

T

r(2T − t− τ)a2(τ) dτdtdΩ

−
∫

Ω

∫ 2T

T

θ′2(t)

∫ 2T−t

0

r(2T − t− τ)a1(τ) dτdtdΩ

+

∫

Γq

∫ T

0

θ′1(t)

∫ T

0

r(2T − t− τ)q̄1(τ) dτdtdΓ

+

∫

Γq

∫ T

0

θ′1(t)

∫ 2T−t

T

r(2T − t− τ)q̄2(τ) dτdtdΓ

+

∫

Γq

∫ 2T

T

θ′2(t)

∫ 2T−t

0

r(2T − t− τ)q̄1(τ) dτdtdΓ

−
∫

Ω

γρθ̄0

∫ T

0

r(2T − t)θ′1(t) dtdΩ−
∫

Ω

γρθ̄0

∫ 2T

T

r(2T − t)θ′2(t) dtdΩ

(3.4.31)

It is possible to notice that, using the biconvolutive bilinear form, one obtains the following
principle:

F
SG
cc (θ1, θ2) = min

θ′1

stat
θ′2

F
SG
cc (θ′1, θ

′

2) (3.4.32)

Here θ1, θ2 are the exact solution of the problem, while θ′1, θ
′

2 are arbitrary but compatible
temperature fields.

3.5 Numerical simulations

Example a: a finite rod of length L and constant cross-sectional area A (Fig. 3.1(a)) with null
temperature for t < 0 and a prescribed temperature at its ends for t ≥ 0 will be considered. The
spatial discretization is performed with standard finite elements of length le with two nodes,
with one degree of freedom in each node.
For simplicity, the rod is made of the same homogeneous material.
The rod is subdivided into N finite elements (Fig. 3.1(b)), and α(t) = [α1, ..., αns

]T is the
vector on the ns degrees of freedom of the assembled structure.
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Figure 3.1: Geometrical properties (a) and Finite Element Discretization (b) of the finite rod.

Time discretization. The vector α(t) of the degrees of freedom of the assembled structure
is now written as a function of time degrees of freedom β(t) = [β1, ..., βnt

]T through shape
functions collected into the matrix M (t), with t ∈ T :

α(t) =




α1(t)
·
·
·

αns
(y)



=




mT
1 (t)

· · ·
mT

ns
(y)


 ·




β1(t)
· · ·

βns
(y)


 = M (t)β (3.5.1)

In every example shown here, all the spatial degrees of freedom αi(t) are discretized with respect
to time using the same interpolation functions, i.e

m1 = ... = mns
= m = [m1, ...,mnt

]T (3.5.2)

In this way ns × nt is the total number of degrees of freedom.

The initial temperature of the rod and the rate of heat production per unit volume are null,
but at its ends the temperature is assigned and constant.
The exact solution of the problem can be found in literature (Carslaw, Jaeger, 1986):

θ(x, t) =
2

L

∞∑

n=1

e−
n2π2t
L2 sin

nπx

L

[∫ L

0

θ̄ sin
nπx

L
dx+

nπ

L

∫ t

0

e
n2π2λ

L2 (θ0 − (−1)nθL)dλ

]
(3.5.3)

where L is the total length of the rod, θ̄ is the initial temperature and θ0 = θL is the assigned
temperature at its ends.
For our specific case, we have:

θ(x, t) =
2

π

∞∑

n=1

1

n
(θ0 − (−1)nθL) sin

nπx

L

(
1− e−

n2π2t
L2

)
(3.5.4)

This problem is analysed using different forms for the r(t) function:

1. r(t) =

∫
∞

0

e−α(2d−t) dα with d > T, d = 1.5T ;

2. r(t) = t2 ln t;
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3. r(t) = ln t;

4. r(t) = t;

5. r(t) = t2.

In all examples, negative exponential time shape functions are used:

mT
e =[1, e−t/t∗ , e−0.1t/t∗ , ...] (3.5.5)

where t∗ is a parameter to be defined through the trial error method and has the meaning of a
relaxation time.
For each analysis, the internal temperatures (calculated in correspondence of the internal nodes)
are plotted versus time for different time intervals and for 2 and 3 degrees of freedom.

First, Gurtin’s formulation is considered. After spatial discretization (the rod is subdivided
into four linear finite elements), Gurtin’s functional is reduced to the following form (first using
the convolutive bilinear form, than using the biconvolutive bilinear form):

F
G
c =

l

3

∫ 2T

0

θ2(2T − t)θ̇2(t) dt+
l

12

∫ 2T

0

θ2(2T − t)θ̇3(t) dt+
1

l

∫ 2T

0

θ2(2T − t)θ2(t) dt

− 1

l

∫ 2T

0

θ2(2T − t)θ3(t) dt+
l

3

∫ 2T

0

θ3(2T − t)θ̇3(t) dt+
l

12

∫ 2T

0

θ3(2T − t)θ̇2(t) dt

+
l

12

∫ 2T

0

θ3(2T − t)θ̇4(t) dt+
1

l

∫ 2T

0

θ3(2T − t)θ3(t) dt−
1

l

∫ 2T

0

θ3(2T − t)θ4(t) dt

+
l

3

∫ 2T

0

θ4(2T − t)θ̇4(t) dt+
l

12

∫ 2T

0

θ4(2T − t)θ̇3(t) dt+
1

l

∫ 2T

0

θ4(2T − t)θ4(t) dt

− 1

l

∫ 2T

0

θ2(2T − t)θ0(t) dt−
1

l

∫ 2T

0

θ4(2T − t)θL(t) dt

+
l

3
θ2(2T )θ2(0) dt+

l

3
θ3(2T )θ3(0) dt+

l

3
θ4(2T )θ4(0)

+
l

12
θ2(2T )θ3(0) +

l

12
θ3(2T )θ2(0)

+
l

12
θ3(2T )θ4(0) +

l

12
θ4(2T )θ3(0)

(3.5.6)
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F
G
cc =

l

3

∫ 2T

0

θ2(t)

∫ 2T−t

0

r(2T − t− τ)θ̇2(τ) dτ dt+
l

12

∫ 2T

0

θ2(t)

∫ 2T−t

0

r(2T − t− τ)θ̇3(τ) dτ dt

+
1

l

∫ 2T

0

θ2(t)

∫ 2T−t

0

r(2T − t− τ)θ2(τ) dτ dt−
1

2l

∫ 2T

0

θ2(t)

∫ 2T−t

0

r(2T − t− τ)θ3(τ) dτ dt

+
l

3

∫ 2T

0

θ3(t)

∫ 2T−t

0

r(2T − t− τ)θ̇3(τ) dτ dt+
l

12

∫ 2T

0

θ3(t)

∫ 2T−t

0

r(2T − t− τ)θ̇2(τ) dτ dt

+
l

12

∫ 2T

0

θ3(t)

∫ 2T−t

0

r(2T − t− τ)θ̇4(τ) dτ dt+
1

l

∫ 2T

0

θ3(t)

∫ 2T−t

0

r(2T − t− τ)θ3(τ) dτ dt

− 1

2l

∫ 2T

0

θ3(t)

∫ 2T−t

0

r(2T − t− τ)θ2(τ) dτ dt−
1

2l

∫ 2T

0

θ3(t)

∫ 2T−t

0

r(2T − t− τ)θ4(τ) dτ dt

+
l

3

∫ 2T

0

θ4(t)

∫ 2T−t

0

r(2T − t− τ)θ̇4(τ) dτ dt+
l

12

∫ 2T

0

θ4(t)

∫ 2T−t

0

r(2T − t− τ)θ̇3(τ) dτ dt

+
1

l

∫ 2T

0

θ4(t)

∫ 2T−t

0

r(2T − t− τ)θ4(τ) dτ dt−
1

2l

∫ 2T

0

θ4(t)

∫ 2T−t

0

r(2T − t− τ)θ3(τ) dτ dt

− 1

l

∫ 2T

0

θ2(t)

∫ 2T−t

0

r(2T − t− τ)θ0(τ) dτdt−
1

l

∫ 2T

0

θ4(t)

∫ 2T−t

0

r(2T − t− τ)θL(τ) dτdt

+
l

3

∫ 2T

0

θ2(t)r(2T − t)θ2(0) dt+
l

3

∫ 2T

0

θ3(t)r(2T − t)θ3(0) dt+
l

3

∫ 2T

0

θ4(t)r(2T − t)θ4(0) dt

+
l

12

∫ 2T

0

θ2(t)r(2T − t)θ3(0) dτ dt+
l

12

∫ 2T

0

θ3(t)r(2T − t)θ2(0) dt

+
l

12

∫ 2T

0

θ3(t)r(2T − t)θ4(0) dt+
l

12

∫ 2T

0

θ4(t)r(2T − t)θ3(0) dt

(3.5.7)
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By performing an integration by parts on the integrals containing a time derivation on the
temperature variable and adding the corresponding integrals, the former functional becomes:

F
G
cc =

l

3

∫ 2T

0

θ2(t)

∫ 2T−t

0

ṙ(2T − t− τ)θ2(τ) dτ dt+
r(0) · l

3

∫ 2T

0

θ2(t)θ2(2T − t) dt

+
l

6

∫ 2T

0

θ2(t)

∫ 2T−t

0

ṙ(2T − t− τ)θ3(τ) dτ dt+
r(0) · l

6

∫ 2T

0

θ2(t)θ3(2T − t) dt

+
1

l

∫ 2T

0

θ2(t)

∫ 2T−t

0

r(2T − t− τ)θ2(τ) dτ dt−
1

l

∫ 2T

0

θ2(t)

∫ 2T−t

0

r(2T − t− τ)θ3(τ) dτ dt

+
l

3

∫ 2T

0

θ3(t)

∫ 2T−t

0

ṙ(2T − t− τ)θ3(τ) dτ dt+
r(0) · l

3

∫ 2T

0

θ3(t)θ3(2T − t) dt

+
l

6

∫ 2T

0

θ3(t)

∫ 2T−t

0

ṙ(2T − t− τ)θ4(τ) dτ dt+
r(0) · l

6

∫ 2T

0

θ3(t)θ4(2T − t) dt

+
1

l

∫ 2T

0

θ3(t)

∫ 2T−t

0

r(2T − t− τ)θ3(τ) dτ dt−
1

l

∫ 2T

0

θ3(t)

∫ 2T−t

0

r(2T − t− τ)θ4(τ) dτ dt

+
l

3

∫ 2T

0

θ4(t)

∫ 2T−t

0

ṙ(2T − t− τ)θ4(τ) dτ dt+
r(0) · l

3

∫ 2T

0

θ4(t)θ4(2T − t) dt

+
1

l

∫ 2T

0

θ4(t)

∫ 2T−t

0

r(2T − t− τ)θ4(τ) dτ dt

− 1

l

∫ 2T

0

θ2(t)

∫ 2T−t

0

r(2T − t− τ)θ0(τ) dτdt−
1

l

∫ 2T

0

θ4(t)

∫ 2T−t

0

r(2T − t− τ)θL(τ) dτdt

(3.5.8)

where θi, i = 2, 3, 4 refers to the temperature of the ith node and l is the length of the single
finite element.
In Figure 3.2, the ratio between the temperature at the ith node of the rod at time t and the
assigned temperature at its ends θL is plotted using the convolutive bilinear form. The time
shape functions are of exponential type (3.5.5) with t∗ = 1.667 days.
The time ranges from 0 to 1-10-20 days and the number of degrees of freedom goes from 2 to
3.
The diagrams show that the method using exponential time shape functions allows a good
interpretation of the internal temperature of the rod. The solution is satisfactory, in particular,
when longer time ranges are considered.
In figures 3.3-3.7 the results of the method using the biconvolutive bilinear form are presented
with the five different forms of the r(t) functions mentioned above. As before, exponential time
shape functions allow a acceptable interpretation of thermal behaviour of the rod, expecially
for longer time ranges.
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Figure 3.2: Numerical results using Gurtin’s formulation with the convolutive bilinear form
and exponential time shape functions.
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Figure 3.3: Numerical results using Gurtin’s formulation with the biconvolutive bilinear form

and exponential time shape functions. Here, r(t) =

∫
∞

0

e−α(2d−t) dα .
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Figure 3.4: Numerical results using Gurtin’s formulation with the biconvolutive bilinear form
and exponential time shape functions. Here, r(t) = t2 ln t .
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Figure 3.5: Numerical results using Gurtin’s formulation with the biconvolutive bilinear form
and exponential time shape functions. Here, r(t) = ln t .
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Figure 3.6: Numerical results using Gurtin’s formulation with the biconvolutive bilinear form
and exponential time shape functions. Here, r(t) = t .
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Figure 3.7: Numerical results using Gurtin’s formulation with the biconvolutive bilinear form
and exponential time shape functions. Here, r(t) = t2 .
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Now, split Gurtin’s formulation is considered, using the biconvolutive bilinear form and
exponential time shape functions.
It is important to notice that the results obtained using r(t) = ln t are not reported, since the
percentual error is significantly higher compared to the results obtained using the four other
functions r(t).
Figures 3.8-3.11 show the numerical results obtained by splitting the time interval 0-20 days
into two equal parts. In each figure, in the first line of diagrams, we have considered from 2
to 3 degrees of freedom both in the first and in the second sub-interval and, surprisingly, in all
cases, the results are worse than those obtained using Gurtin’s functional.
As it is possible to see, a constant time function is sufficient to approximate well the solution
in the second sub-interval. So, in the second and third lines of diagrams of each figure, in the
first subinterval nt time degrees of freedom are considered, whereas, in the second one, nt − 1
(in the second line) and nt − 2 (in the third line) time degrees of freedom are considered. It is
noted that the solutions improve and the percentual error decreases in each case.
Furthermore it is also possible to analyse the split Gurtin’s functional inserting the exact solu-
tion in the second subinterval, which is constant from a certain moment, reducing consequently
the unknowns only in the first subinterval. If one tries this analysis, the numerical results
obtained would slightly differ from the ones already presented in figures 3.8-3.11.
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Figure 3.8: Numerical results using split Gurtin’s formulation with the biconvolutive bilinear

form and exponential time shape functions. Here, r(t) =

∫
∞

0

e−α(2d−t) dα .
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Figure 3.9: Numerical results using split Gurtin’s formulation with the biconvolutive bilinear
form and exponential time shape functions. Here, r(t) = t2 ln t .

77



CHAPTER 3. VARIATIONAL PRINCIPLES AND NUMERICAL INTEGRATION
METHODS FOR THE HEAT CONDUCTION PROBLEM

Figure 3.10: Numerical results using split Gurtin’s formulation with the biconvolutive bilinear
form and exponential time shape functions. Here, r(t) = t .
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Figure 3.11: Numerical results using split Gurtin’s formulation with the biconvolutive bilinear
form and exponential time shape functions. Here, r(t) = t2 .
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Example b: a finite square element with side L = π/10 with null temperature for
t < 0 and a prescribed temperature at its boundary for t ≥ 0 will be considered. The initial
temperature is null and there is no heat generation within the solid. The boundary at y = 0
is kept at a temperature independent on time φ(x) and the remaining boundaries are kept at
zero temperature (see Fig. 3.12)

Figure 3.12: A finite square element with side L with null temperature for t < 0 and a prescribed
temperature at its boundary for t ≥ 0.

The equations governing the problem are:





∂θ

∂t
− ∂2θ

∂x2
− ∂2θ

∂y2
= 0 Ω× [0, 2T ]

θ(0, x, y) = 0 Ω× t = 0

θ(t, 0, y) = 0 x = 0× [0, 2T ]

θ(t, L, y) = 0 x = L× [0, 2T ]

θ(t, x, 0) = φ(t, x) = sin(20x) y = 0× [0, 2T ]

θ(t, x, L) = 0 y = L× [0, 2T ]

(3.5.9)

The spatial discretization is performed with standard 2-D finite elements of side le with four
nodes, with one degree of freedom in each node.
For simplicity, the square is made of the same homogeneous material.
The square is subdivided into onehundred forty-four finite elements, and α(t) = [α1, ..., αns

]T
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is the vector on the ns degrees of freedom of the assembled structure.
The exact solution of the problem can be found in literature (Ozisik, 1968):

θ(x, y, t) =
4

ab

∞∑

m=1

∞∑

n=1

νn
β2
m + ν2

n

· sin(βmx) · sin(νny) ·
(
1− e−(β2

m+ν2n)·t
)
·
∫ a

x′=0

φ(x′) · sin(βmx
′) dx′

(3.5.10)

where a is the horizontal side and b is the vertical side (in this case both equal to L) and

νn =
π · n
b

βm =
π ·m
a

φ(x) = sin(20x)

(3.5.11)

This problem is analysed using different forms for the r(t) = t2 function.
Negative exponential time shape functions are used:

mT
e =[1, e−t/t∗ , e−0.1t/t∗ , ...] (3.5.12)

where t∗ is a parameter to be defined through the trial error method and has the meaning of a
relaxation time.
For each analysis, the internal temperature calculated in correspondence of the internal node of
coordinates (L/4, L/4) is plotted versus time for different time intervals for 2 degrees of freedom.

First, Gurtin’s formulation is considered.
Gurtin’s functional can be written as follows:

F
G
cc =

1

2

∫ L

0

∫ L

0

∫ 2T

0

θ(t)

∫ 2T−t

0

r(2T − t− τ)θ̇(τ) dτ dt dxdy

+
1

2

∫ L

0

∫ L

0

∫ 2T

0

∂θ

∂x
(t)

∫ 2T−t

0

r(2T − t− τ)
∂θ

∂x
(τ) dτ dt dxdy

+
1

2

∫ L

0

∫ L

0

∫ 2T

0

∂θ

∂y
(t)

∫ 2T−t

0

r(2T − t− τ)
∂θ

∂y
(τ) dτ dt dxdy

(3.5.13)

In Figure 3.13, the ratio between the temperature calculated in correspondence of the internal
node od coordinates (L/4, L/4) at time t and the assigned temperature at (L/4, 0) is plotted
using the biconvolutive bilinear form with r(t) = t2. The time shape functions are of exponen-
tial type (3.5.12).
The time ranges from 0-0.002-0.008-0.0012 to 0.030 days and the number of degrees of freedom
is 2.
The diagrams show that the method using exponential time shape functions allows a good in-
terpretation of the internal temperature of the rod. The solution is satisfactory using different
values of t∗.
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Figure 3.13: Numerical results using Gurtin’s formulation with the biconvolutive bilinear form
and exponential time shape functions. Here, r(t) = t2.
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Now, split Gurtin’s formulation is considered, using the biconvolutive bilinear form and
exponential time shape functions.
Figure 3.14 shows the numerical results obtained by splitting the time interval 0-0.03 days into
two equal parts. In the first column, we have considered 2 degrees of freedom both in the first
and in the second sub-interval and, surprisingly, the results are worse than those obtained using
Gurtin’s functional.
As it is possible to see, a constant time function is sufficient to approximate well the solution
in the second sub-interval. So, in the second column, in the first subinterval nt time degrees
of freedom are considered, whereas, in the second one, nt − 1 time degrees of freedom are
considered. It is noted that the solutions improve.

Figure 3.14: Numerical results using split Gurtin’s formulation with the biconvolutive bilinear
form and exponential time shape functions. Here, r(t) = t2.
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3.6 Conclusions

To the authors’ knowledge, no significant work seems to exist in the literature concerning the
use of variational formulations for the numerical solution of the heat conduction problem.
In particular, variational principles based on convolutional bilinear forms with respect to time
do not seem to have had any place so far in computational procedures for the heat conduction
problem. This Chapter aims at investigating the effectiveness of numerical procedures based
on these variational formulations.

In particular, another interesting bilinear form is introduced: a so-called biconvolutive
bilinear form. Through the exploitation of particular functions (that in this Chapter were
called r(t)) the operator of the problem proves to be symmetric with respect to this new
bilinear form. Also, new variational formulations and extremal principles are thus derived.

Two variational formulations for the linear viscoelastic problem are critically reviewed
and numerically tested with the purpose of investigating their effectiveness in the numerical
solution of the heat conduction problem.

In the case of finding the solution over a finite time interval in a single step, Gurtin’s for-
mulation works well, using only two or three temporal degrees of freedom; by carefully choosing
the temporal interpolation functions, Gurtin’s formulation leads to interesting numerical results,
in particular, using negative exponential time shape functions.

With Gurtin’s formulation, the results are more sensitive to the choice made of interpo-
lation functions over time. Polynomial interpolation functions are appropriate only for short
time intervals. The interpolation functions that have given the best results are the negative
exponential functions because they capture well the typically damped trend of the solution.

The split Gurtin formulation gives good results, expecially for a lower number of temporal
degrees of freedom in second subinterval. From the numerical point of view it does not seem to
provide any improvement over the unsplit formulation. In any case, the doubling of unknowns
makes the method less competitive than the unsplit Gurtin’s method. The split Gurtin func-
tional, however, could have advantages from the theoretical point of view, as shown in Carini
and Mattei (2015). In fact, the formulation is of the min-max type and, by the adopted time
splitting, one is able to isolate a part of the functional that represents the free energy of the
system and is, therefore, in general, semidefinite positive.

In the case of the Gurtin and split Gurtin functionals, the problem of the optimal choice
of the relaxation time to be used in the negative exponential interpolation functions remains
unsolved.

In conclusion, of the three formulations presented here and numerically tested, Gurtin’s
original formulation seems to be the most effective in numerically solving the linear transient
heat conduction problem.

84



CHAPTER 3. VARIATIONAL PRINCIPLES AND NUMERICAL INTEGRATION
METHODS FOR THE HEAT CONDUCTION PROBLEM

References

Atanackovic, T.M., 1977. A Note on a Variational Principle for Simple Elastic Materials. Acta
Mechanica, 26, 331-335.

Atanackovic, T.M., 1978. On a Stationary Principle for Non-Conservative Dynamica Systems.
International Journal of Non-Linear Mechanics, 13, 139-143.

Atanackovic, T.M., 1980. A Stationary Principle for Simple Elastic Materials. ZAMM, 60,
T 94-T 95.

Atanackovic, T.M., 1983. The Sufficient Condition for an Extremum in the Variational Princi-
ple with Non-Commutative Variational Rules. Proceedings of the IUTAM-ISIMM Symposium
on Modern Developments in Analytical Mechanics. Atti dell’Accademia delle Scienze di Torino,
Supplemento al n. 117, 463-467.

Auchmuty, G., 1988. Variational Principles for Operator Equations and Initial Value Prob-
lems. Nonlinear Analysis, Theory, Methods and Applications, 12(5), 531-564.

Auchmuty, G., 1993. Saddle-Points and Existence-Uniqueness for Evolution Equations. Differ-
ential and Integral Equations, 6(5), 1161-1171.

Barnsley, M.F., Robinson P.D., 1974. Bivariational Bounds. Proceedings of the Royal So-
ciety of London, Ser. A, 338, 527-533.

Barnsley, M.F., Robinson P.D., 1975. Bivariational Bounds Associated with Nonself-adjoint
Linear Operators. Proceedings of the Royal Society od Edinburgh, 75A (9), 109-128.

Biot, M.A., 1970. Variational Principles in Heat Transfer (A Unified Lagrangian Analysis
of Dissipative Phenomena). Clarendon Press, Oxford.

Carini, A., Feriani, A., 2020. Minimum formulations for linear initial-value problems. Technical
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Chapter 4

Time domain analytical bounds to the
overall properties of linear viscoelastic
composites: explicit bounds to the
homogenized relaxation and creep
kernels

Notation

Greek and latin letters

• Ω: Region occupied by a solid body;

• Γp: Loaded region of the boundary;

• Γu: Constrained region of the boundary;

• Γ: External surface of the solid body;

• ni(xr): Unit outward normal vector components;

• ui(xr, t): Displacement vector components;

• ǫij(xr, t): Small strain tensor components;

• σij(xr, t): Stress tensor components;

• u0
i (xr, t): Prescribed displacement vector components;

• bBj (xr, t): Body force vector components;

• pBj (xr, t): Surface traction vector components;

• V : Volume of the body;

• N : Number of phases in the composite material;

• R(i): Relaxation kernel of the phase (i);
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• ci: Volumic fraction of phase (i);

• Rh: Homogenized relaxation function;

• C(i): Creep kernel of the phase (i);

• Ch: Homogenized creep function;

• R
(i)
S : Shear relaxation kernel of phase (i);

• GE, GV : Shear moduli of the viscoelastic material;

• Gel: Shear modulus of the elastic material;

• ηV : Viscosity coefficient;

• C
(i)
S : Shear creep kernel of phase (i);

• τ (i): Shear stress of phase (i);

• γ: Shear strain;

• ν: Poisson’s ratio;

• R
(i)
V : Volumetric relaxation kernel of phase (i);

• KE, KV : Bulk moduli of the viscoelastic material;

• Kel: Bulk modulus of the elastic material;

• C
(i)
V : Volumetric creep kernel of phase (i);

• p: Hydrostatic pressure;

• ǫvol: Volumetric strain;

• δ(t): Superimposed displacement.

Symbols

• ∗: Convolution product;

• ∀: For all;

• :̃ Adjoint operator;

•
′: Admissible term;

• 1: Variable defined over the first subinterval;

• 2: Variable defined over the second subinterval.

Operators and functions

• 〈 〉: Volume average;

• TPE: Total Potential Energy functional;
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• TCE: Total Complementary Energy functional.

• H(t): Heaviside function;

• /i : Partial derivative operation;

• L: Laplace transform.
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4.1 Introduction

The viscoelastic problem was proved in Gurtin (1963) to be symmetric with respect to the
convolutive bilinear form; nevertheless, even exploiting this symmetry, and despite a rather in-
tense research activity (see for example Carini and Mattei, 2015, and references quoted therein),
no usable extremum formulation has ever been obtained for linear viscoelasticity in the time
domain1, and only few standard, explicit, analytical bounds in the time domain to the ho-
mogenized viscous kernels for viscoelastic composites have been obtained so far. To the best
of our knowledge, the main contribution, in this sense, has been given by Huet (1995), where
a strict lower bound to the homogenized relaxation kernel has been proposed, together with
other bounds, both lower and upper, on the rates of both the homogenized creep and relax-
ation kernels. From these last, Huet (1995) has obtained bounds also for total quantities which,
however, appear of difficult practical application. Moreover, the same Huet (1995) points out,
in his conclusions, that “there are still classical results of the elasticity theory that cannot be
transferred through to the viscoelastic case (...) For this, true viscoelasticity minimum theorems
(...) are still needed”.

In recent times, Carini and Mattei (2015) were able to exploit older ideas by Staverman
and Schwarzl (1952), and by Mandel (1966), to obtain several new min-stat, or even minimum,
formulations in viscoelasticity. None of these, unfortunately, could be adopted directly to obtain
bounds to the homogenized viscous kernels (see also Mattei and Milton, 2016).

Extremum principles for linear viscoelasticity have been derived from the theory presented
in Carini and Mattei (2015), only considering deviatoric strains. From these, upper and lower
bounds to the homogenized viscous kernels of viscoelastic composites are derived in a general
form. Subsequently, simple explicit expressions are obtained for the simplest case, i.e., first-
order bounds for macroscopically isotropic composites with any number of isotropic phases.

The validity of the bounds presented herein is finally checked by comparison with refer-
ence numerical solutions, concerning RVEs, obtained by means of Finite Element analyses.

Carini-Mattei Functional
When the aim is to obtain bounds to the homogenized viscous kernels of viscoelastic composites,
the loading is chosen in a very specific way.

In fact, when studying RVEs for deriving estimates or bounds to the homogenized viscous
kernels of viscoelastic composites, it is customary, and specially convenient, to adopt either
“affine” displacements prescribed on the constrained boundary Γu = Γ of the RVE, or surface
tractions on Γp = Γ corresponding to uniform stresses in the homogenized solid; for both these
cases, a unit-step time history is usually considered, as it will be done in the sequel of this
work.

Let us examine, for example (all the other cases could be approached in the same way),
the case in which one wants to obtain bounds to the homogenized relaxation kernel. It is conve-
nient to choose as a specific loading for the considered heterogeneous RVE, “affine” prescribed

1Analytical minimum principles for linear viscoelasticity have been proposed in Rafalski (1969), Reiss and
Haug (1978), and Carini et al. (1995). Nevertheless, none of these can be adopted to obtain bounds to the
homogenized viscous kernels of viscoelastic composites in the time domain. The formulation proposed in Carini
et al. (1995) can be adopted as a basis for time integration, but not for analytical developments leading to
homogenization, whereas the other two can be adopted to obtain bounds only to the Laplace transforms of the
homogenized viscous kernels.
Cherkaev and Gibiansky (1994), and Milton (1990), formulated extremum principles for linear initial value

problems, including the hereditary viscoelastic one, in the frequency domain. The work by Milton (1990) can
be extended to the time domain, even though it was not explicitly formulated with this purpose.

91



CHAPTER 4. TIME DOMAIN ANALYTICAL BOUNDS TO THE OVERALL
PROPERTIES OF LINEAR VISCOELASTIC COMPOSITES: EXPLICIT BOUNDS TO
THE HOMOGENIZED RELAXATION AND CREEP KERNELS

displacements on Γu = Γ, of the type

u0
i (xr, t) = 〈ǫij(xr, t)〉xj = ǫ0ij(t)xj, 0 ≤ t ≤ 2T (4.1.1)

and zero body forces bj. This loading corresponds to a known strain ǫ0ij(t), independent of
space, in the homogenized RVE.

The definition of the loading terms is made complete by assuming the following time
history for the loading strain:

〈ǫij(xr, t)〉 = ǫ0ij(t) = ǫijH(t), 0 ≤ t ≤ 2T (4.1.2)

ǫij being a prescribed constant strain tensor, and H(t) the Heaviside function; this time history
for the applied strains is the one usually adopted in practice to perform relaxation tests. Given
any generic function f(xr, t), we adopt the notation 〈f(t)〉 to denote the volume average of
f(xr, t) over the solid body Ω, i.e.,:

〈f(t)〉 = 1

V

∫

Ω

f(xr, t) dΩ (4.1.3)

In Carini and Mattei (2015), the equations governing the viscoelastic problem are pre-
sented:

• Equilibrium equations

σij/j(xr, t) + bi(xr, t) = 0 in Ω× [0, 2T ]

σij(xr, t)nj(xr) = pi(xr, t) on Γp × [0, 2T ];
(4.1.4)

• Kinematic compatibility

ǫij(xr, t) =
1

2
(ui/j(xr, t) + uj/i(xr, t)) in Ω× [0, 2T ]

ui(xr, t) = u0
i (xr, t) on Γu × [0, 2T ];

(4.1.5)

• Constitutive law:

σij(xr, t) =

∫ t

0−
Rijhk(xr, t− τ) dǫhk(xr, τ). (4.1.6)

Therefore, a Total Potential Energy like functional is defined, based on the convolutive bilinear
form (chosen due to the lack of symmetry of the classical bilinear forms).
The convolution integral is written as, considering any two functions f(xr, t) and g(xr, t)):

f(xr, t) ∗ g(xr, t) :=

∫ t

0−
f(xr, t− τ)dg(xr, τ) (4.1.7)

Thus, the convolutive bilinear form is written as:

(σ′

ij, ǫ
′

ij)c = σ′

ij(2T ) ∗ ǫ′ij(2T ) =
∫ 2T

0−
σ′

ij(2T − t)dǫ′ij(t) (4.1.8)

The functionals described in Carini and Mattei (2015) are obtained after a splitting procedure
of the time interval [0, 2T ] into two subinterval of the same amplitude [0, T ] and [T, 2T ], thus
formally doubling the unknowns of the problem:

ǫij(t) =

{
ǫ1ij(t) for t ∈ [0, T ]

ǫ21ij(t) for t ∈ [T, 2T ]
(4.1.9)
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σij(t) =

{
σ1ij(t) for t ∈ [0, T ]

σ21ij(t) for t ∈ [T, 2T ]
(4.1.10)

The subscript 1 refers to the quantities defined over the time interval [0, T ], and subscript 2
indicates quantities defined over [T, 2T ].
Accounting for the loading conditions (4.1.1) and (4.1.2), it writes as follows:

TPE[u′

1i, u
′

2i] =
1

2

∫

Ω

(
Aǫ′1ij(2T ) ∗ ǫ′1ij(2T ) + 2B̃ǫ′1ij(2T ) ∗ ǫ′2ij(2T )

)
dΩ (4.1.11)

which can also be rewritten in the following form:

1

V
TPE[u′

1i, u
′

2i] =
1

2

〈
Aǫ′1ij(2T ) ∗ ǫ′1ij(2T )

〉
+
〈
B̃ǫ′1ij(2T ) ∗ ǫ′2ij(2T )

〉
(4.1.12)

where the operators are defined as:

A(·) =
∫ T

0−

Rijhk(t− τ) d(·)

B(·) =
∫ t

T

Rijhk(t− τ) d(·)

B̃(·) =
∫ t

0−

Rijhk(t− τ) d(·)

(4.1.13)

and where u′

1i, u
′

2i, ǫ
′

1ij, ǫ
′

2ij are arbitrary but compatible displacement and strain fields. Operator
A is symmetric with respect to the bilinear form (4.1.8).
In Carini and Mattei (2015) it is demonstrated that the Total Potential Energy like functional
(4.1.11) is a min-stat functional, whose stationarity provide the (unique) solution of the real
viscoelastic problem:

TPE[u1i, u2i] = min
u′

1i

stat
u′

2i

TPE[u′

1i, u
′

2i] (4.1.14)

Unfortunately, in order to obtain bounds for the viscous kernels of viscoelastic composites, it
is necessary to consider extremum theorems and, as already stated, functional (4.1.11) is only
a min-stat one.
Nevertheless, it is possible to deduce a minimum principle from (4.1.11), considering particular
loading conditions for the RVE.
It is possible to prove that, under the following conditions:

1. macroscopically isotropic viscoelastic composites,

2. for the RVE loading described as (4.1.1) and (4.1.2),

3. under deviatoric loading applied to the RVE and

4. for suitable choices of the admissible displacement u′

1i,

the second term in eq. (4.1.12) is identically equal to zero. This means that, under these
assumptions, the Total Potential Energy functional (4.1.12) reduces only to the first quadratic
term in ǫ′1ij, deriving a true minimum principle.
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In fact, clearly if one inserts the true solution ǫ2ij(2T ), a minimum theorem is automat-
ically obtained, but, unfortunately, the exact solution is not available. Nevertheless, if one
assumes to have it available, and then selects an admissible displacement u′

1j that cancels the

term 〈B̃ǫ′1ij(2T ) ∗ ǫ2ij(2T )〉, a fully usable minimum theorem is thus obtained.
To pursue this idea, one can define as strictly admissible a displacement field u′

1j which
(i) is admissible in the standard sense (compatible and satisfying the kinematic boundary

conditions) and (ii) is such that the following holds: 〈B̃ǫ′1ij(2T ) ∗ ǫ2ij(2T )〉 = 0.
It is important to observe that the real solution u1j(t) is strictly admissible in the above sense.
Therefore, it is obvious that among all the strictly admissible displacements the real one makes
the first integral in functional (4.1.12) a minimum.

It is now possible to prove that also the choice u′

1j(t) = ǫ0ij(t)xj = ǫijxjH(t), extended to
all the points of the RVE, is strictly admissible in the special case of a purely deviatoric type
of kinematic loading on the RVE.

Proof. Lets’ write Carini-Mattei functional for an admissible function:

1

V
TPE[u′

1i] =
1

2

〈
Aǫ′1ij(2T ) ∗ ǫ′1ij(2T )

〉
+
〈
B̃ǫ′1ij(2T ) ∗ ǫ2ij(2T )

〉
(4.1.15)

In the second member of the functional,
〈
B̃ǫ′1ij(2T ) ∗ ǫ2ij(2T )

〉
, the term ǫ2ij(2T ) is known,

whereas ǫ′1ij(2T ) is an admissible function.

Considering that operator B̃ is the adjoint of B, one can write:

〈B̃ǫ′1ij(2T ) ∗ ǫ2ij(2T )〉 = 〈Bǫ2ij(2T ) ∗ ǫ′1ij(2T )〉 (4.1.16)

Defining:
Bǫ2ij(2T ) = σB

2ij(2T ) (4.1.17)

Equation (4.1.16) becomes (recalling (4.1.3)):

〈Bǫ2ij ∗ ǫ′1ij〉 =〈σB
2ij ∗ ǫ′1ij〉 =

1

V

∫

Ω

σB
2ij ∗ ǫ′1ij dΩ =

1

V

∫

Ω

σB
2ij ∗ u′

1j/i dΩ

=
1

V

∫

Ω

(
σB
2ij ∗ u′

1j

)
/i
dΩ− 1

V

∫

Ω

σB
2ij/i ∗ u′

1j dΩ

(4.1.18)

σB
2ij/i is force per unit volume and it will be denoted as −bBj .

Thus, (4.1.18) becomes:

〈Bǫ2ij ∗ ǫ′1ij〉 =
1

V

∫

Γ

σB
2ijni ∗ u′

1j dΓ +
1

V

∫

Ω

bBj ∗ u′

1j dΩ

=
1

V

∫

Γ

pBj ∗ u′

1j dΓ +
1

V

∫

Ω

bBj ∗ u′

1j dΩ

(4.1.19)

The first integral is constant, because u′

1j is assigned on the boundary and σB
2ijni is a surface

traction pBj , depending on ǫ2ij.
As for the second integral, considering the “affine” displacement hypothesis:

u′

1j = ǭ1ijxiH(t), (4.1.20)

it becomes
∫

Ω

bBj ∗ u′

1j dΩ =

∫

Ω

bBj ǭ1ijxi dΩ =

∫

Ω

bBj xi dΩ · ǭ1ij (4.1.21)
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Body forces bBj have a resultant force and a resultant moment, both null for symmetry
reasons. In fact, let’s suppose that the body forces have resultant F different from zero:

Figure 4.1: Proof that the resultant forces are null.

with these procedures, we obtain the same starting situation with F rotated by 90 degrees,
therefore, F = 0 must be valid.
Let’s suppose that the body forces have resultant moment different from zero:

Figure 4.2: Proof that the resultant moment is null.

Therefore, M = 0 must be valid.
The same analyses are valid for the first integral on the right side of (4.1.19).
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It is now possible to prove that the choice of the displacement u′

1i = ǫ0ijxj extended to
all the point of the RVE is strictly admissible in the special case of purely deviatoric type of
kinematic loading on the RVE. To examine in a complete way a purely deviatoric kunematic
loading it is sufficient to consider ǭ12 = ǭ21 as the only non-zero strain components in the RVE.
All the other possible cases could be approached in the same way.
Equation (4.1.19) thus becomes:

〈σB
2ij ∗ ǫ′1ij〉 =

1

V

[∫

Γ

pBj xi dΓ +

∫

Ω

bBj xi dΩ

]
· ǭij (4.1.22)

In the two-dimensional case (4.1.22) becomes:

〈σB
2ij ∗ ǫ′1ij〉 =

1

V

[∫

Γ

pB1 x2 dΓ +

∫

Ω

bB1 x2 dΩ

]
· ǭ21

+
1

V

[∫

Γ

pB2 x1 dΓ +

∫

Ω

bB2 x1 dΩ

]
· ǭ12

(4.1.23)

The quantities in square brackets represent couples, thus one can consider:

∫

Ω

σB
2ij(2T ) ∗ ǫ′1ij(2T ) dΩ = M12 · ǭ21 +M21 · ǭ12 (4.1.24)

Let’s rotate the reference system of 90. In the new reference system the left side of (4.1.24) is
unchanged and M12 and M21 are the same as before (they remain unchanged with respect to
rotation of the reference system), whereas the shear strains ǭ21 and ǭ12 change their signs into
−ǭ21 and −ǭ12.
Thus the following result is also valid:

∫

Ω

σB
2ij(2T ) ∗ ǫ′1ij(2T ) dΩ = − [M12 · ǭ21 +M21 · ǭ12] (4.1.25)

which is real only if

〈σB
2ij ∗ ǫ′1ij〉 = 0 (4.1.26)

As a consequence of this reasoning, under this type of loading for a macroscopically
isotropic viscoelastic RVE, the Carini and Mattei functional (2015) becomes:

TPE[u′

1i] =
1

2

∫

Ω

Aǫ′1ij(2T ) ∗ ǫ′1ij(2T ) dΩ (4.1.27)

Surprisingly, if the boundary displacement are purely volumetric, it is impossible to prove that
〈σB

2ij ∗ ǫ′1ij〉 = 0.
An analogous procedure can be applied to the Total Complementary Energy like functional,
considering as loading conditions only surface tractions producing a constant stress field over
the RVE.
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Upper bounds derived from functional (4.1.27)
We choose, for the arbitrary compatible strain field ǫ′1ij(xr, t), the same definition of eq. (4.1.2),
constant in space and governed in time by the Heaviside function H(t).

According to the definitions of operator A of eq. (4.1.13), of the stress σ2ij = Aǫ1hk+Bǫ2hk,
and of the adopted convolutive bilinear form, the TPE functional of eq. (4.1.27), evaluated in
the solution of the RVE problem, is explicitly written as follows:

TPEsol =
1

2

∫

Ω

∫ 2T

0−

∫ T

0−
Rijhk(2T − t− τ) dǫ1ij(τ) dǫ1hk(t) dΩ (4.1.28)

For this functional, the following minimum theorem holds:

TPE[u1i] = min
u′

1i

TPE[u′

1i] (4.1.29)

Recall now that eq. (4.1.28) denotes the free energy density for this problem; thus, the following
result holds:

1

V
TPEsol =

1

2
ǫijR

h
ijhk(2T )ǫhk (4.1.30)

where Rh
ijhk(2T ) denotes the homogenized value of the relaxation kernel.

The minimum theorem of eq. (4.1.29) allows therefore one to write

ǫijR
h
ijhk(2T )ǫhk ≤

〈
Aǫ′1ij(2T ) ∗ ǫ′1ij(2T )

〉
∀ǫ′1ij strictly admissible (4.1.31)

From this, recalling the definition (4.1.13) of operator A and exploiting the choice (4.1.2) for
ǫ′1ij(t), one obtains finally the desired upper bound to the homogenized relaxation kernel:

ǫijR
h
ijhk(2T )ǫhk ≤ ǫij

〈
Rijhk(2T )

〉
ǫhk (4.1.32)

which, taking T as an arbitrary time, becomes valid for a generic time t.
One can produce an upper bound to the homogenized creep function Ch

ijhk(t) in a similar
way, starting now from the Total Complementary Energy like functional. Now the loading
condition on the RVE must be defined in terms of prescribed tractions; in a fully analogous
way to what is usually done in creep laboratory test, we consider the following loading:

pj(xr, t) = 〈σij(xr, t)〉ni = σ0
ij(t)ni in Γp = Γ (4.1.33)

with
σ0
ij(t) = σijH(t) (4.1.34)

Next, one proceeds in a way analogous to the one illustrated here above. One chooses also
for σ′

1ij the distribution given by eq. (4.1.34). After passages completely similar to those
leading to eq. (4.1.32), which we omit for brevity, one obtains the following upper bound to
the homogenized creep function:

σijC
h
ijhk(2T )σhk ≤ σij

〈
Cijhk(2T )

〉
σhk (4.1.35)

once more holding for any generic time t.

This Chapter directly follows the theory described in Chapter 2 about the viscoelastic be-
haviour of structural materials.
We consider the case of a macroscopically isotropic material.
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Consider a composite material with N phases, denote by ci the volume fraction of each phase
(i) and denote by R(i)(t) and C(i)(t) a scalar relaxation and creep kernel component of phase
(i), respectively.
As shown in the introduction, strict lower bounds were already defined by Huet (1995) (who
proved them, using the Principle of Virtual Work), whereas we obtained upper bounds valid
exclusively under the hypothesis of deviatoric strains.
The proposed upper bounds for the scalar homogenized relaxation Rh(t) and creep Ch(t) kernel
components read as follows:

• upper bound to the relaxation kernel, shear component:

Rh(t) ≤
N∑

i=1

ci ·R(i)(t) ∀t (4.1.36)

• upper bound to the creep kernel, shear component:

Ch(t) ≤
N∑

i=1

ci · C(i)(t) ∀t (4.1.37)

Whereas, the lower bounds for the scalar homogenized relaxation Rh(t) and creep Ch(t) kernel
components read as follows:

• lower bound to the relaxation kernel, shear and volumetric components:

Rh(t) >
1

∑N
i=1

ci
R(i)(t)

∀t (4.1.38)

• lower bound to the creep kernel, shear and volumetric components:

Ch(t) >
1

∑N
i=1

ci
C(i)(t)

∀t (4.1.39)

It is interesting to notice that bounds (4.1.36) and (4.1.37) become, in the limit case when all
phases are linear elastic, identical to the Voigt upper bounds in linear elasticity; and, obviously,
both lower bounds (4.1.38) and (4.1.39) become, in the same limit case, identical to the Reuss
lower bounds in linear elasticity.
Therefore, all these results can be considered extensions to linear viscoelasticity of these two
basic, first-order bounds in elasticity.
For the linear viscoelastic case, both at the initial time t = 0 and for t → ∞ they should
therefore coincide with the Voigt and Reuss bounds, and, for intermediate times, they can be
expected to be affected by errors of the same order of magnitude as the Voigt and Reuss ones.
The lower bounds, as we have already stated, prove to be always verified.
In this Chapter, our aim is to verifying the upper bounds for examples with deviatoric strains.
Numerical tests are performed even on systems subjected to volumetric strains, proving that
upper bounds are not valid.
Also an example of an uniaxial system with elastic and viscoelastic materials arranged in series
is presented, in order to prove that an upper bound can be extrapolated from the TPE functional
(4.1.11).
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4.2 Analysis of an uniaxial system with elastic and vis-

coelastic materials arranged in series

Consider the problem in Fig. 4.3.

Figure 4.3: System with elastic and viscoelastic materials arranged in series.

Namely, a rod with constant unitary cross-sectional area, of length l, with elastic and viscoelas-
tic materials arranged in series subjected to a displacement δ(t), defined as:

δ(t) = ∆ ·H(t) (4.2.1)

where ∆ is constant and H(t) is the Heaviside function.
Phase 1 of the composite is viscoelastic (V), with length l1 and volume fraction c1, governed by
a standard two-parameter solid rheologic model of the Maxwell type, for which, the volumetric
relaxation kernel is written as follows (Migliacci, 1979):

R1(t) = E1 · e−
E1t
η1 (4.2.2)

Phase 2 of the composite is elastic (E), with volume fraction c2 and Young modulus E2.
The data used in this example are:
c1 = 0.7; E1 = 12000 MPa; η1 = 20000 MPa sec
c2 = 0.3; E2 = 6000 MPa

The homogenized value of the relaxation kernel can be obtained using the Laplace transforms:

Rh(t) =L
−1

[
1

c1
L(R1)

+ c2
L(E2)

]
=

E1E2 · e−
E1E2c1t

E1η1c2+E2η1c1

E1c2 + E2c1
(4.2.3)

Whereas the mean value, defined in (4.1.36), is:

〈R(t)〉 =E1 · e−
E1t
η1 · c1 + E2 · c2 (4.2.4)

The curves of Figure 4.4 plot the relaxation function normalized by the elastic Young modulus
E2.
As it is possible to deduce, the mean value does non constitute an upper bound for this structure.
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Figure 4.4: Normalized homogenized relaxation kernel Rh(t)/E2 as a function of time t. Com-
parison between the mean value and the homogenized relaxation kernel of a system with elastic
and viscoelastic materials arranged in series.

Recalling Carini-Mattei functional (4.1.11) and applying it to this particular example
(assuming to know ǫ2ij) it is possible to deduce an upper bound.
Before the splitting, the functional is written as

TPE = +
1

2

∫ l

0

∫ 2T

0−

∫ 2T−t

0−
R(2T − t− τ)d

(
du

dx
(x, t)

)
d

(
du

dx
(x, τ)

)
dx

=+
1

2

∫ l1

0

∫ 2T

0−

∫ 2T−t

0−
R1(2T − t− τ)d

(
du

dx
(x, t)

)
d

(
du

dx
(x, τ)

)
dx

+
1

2

∫ l2

0

∫ 2T

0−

∫ 2T−t

0−
R2(2T − t− τ)d

(
du

dx
(x, t)

)
d

(
du

dx
(x, τ)

)
dx

(4.2.5)

where l1 and l2 are the lengths associated with the first and second phase of the composite.
Using an elastic analysis, one can obtain the elongation of the first phase, meaning the dis-
placement of the intermediate point between the two phases (called uM):

uM = ∆l1 =
δ · c1

E1 ·
∑2

i=1
ci
Ei

=
δ · c1

E1 ·
(

c1
E1

+ c2
E2

) = ∆ · c1E2

c2E1 + c1E2

(4.2.6)

This result can be extended to the viscoelastic case through the correspondence principle with
Laplace transforms.
The functional (written for a single phase) is splitted into two subintervals of the same ampli-
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tude.

TPE =
1

2
〈Aǫ1 ∗ ǫ1〉+ 〈B̃ǫ1 ∗ ǫ2〉

=
1

2

∫ l

0

∫ T

0−

∫ T

0−
R(2T − t− τ)dǫ1(τ)dǫ1(t) dx+

∫ l

0

∫ 2T

T

∫ 2T−t

0−
R(2T − t− τ)dǫ1(τ)dǫ2(t) dx

=
1

2

∫ l

0

[∫ T

0−
R(2T − t)ǫ1(0)dǫ1(t) +

∫ T

0−

∫ T

0

R(2T − t− τ)
∂ǫ1
∂τ

dτ dǫ1(t)

]
dx

+

∫ l

0

[∫ 2T

T

R(2T − t)ǫ1(0)dǫ2(t) +

∫ 2T

T

∫ 2T−t

0

R(2T − t− τ)
∂ǫ1
∂τ

dτ dǫ2(t)

]
dx

=
1

2

∫ l

0

[
R(2T )ǫ1(0)ǫ1(0) +

∫ T

0

R(2T − t)ǫ1(0)
∂ǫ1
∂t

dt

]
dx

+
1

2

∫ l

0

[∫ T

0

R(2T − t)ǫ1(0)
∂ǫ1
∂τ

dτ +

∫ T

0

∫ T

0

R(2T − t− τ)
∂ǫ1
∂τ

dτ
∂ǫ1
∂t

dt

]
dx

+

∫ l

0

[∫ 2T

T

R(2T − t)ǫ1(0)
∂ǫ2
∂t

dt+

∫ 2T

T

∫ 2T−t

0

R(2T − t− τ)
∂ǫ1
∂τ

dτ
∂ǫ2
∂t

dt

]
dx

=
1

2

∫ l

0

[
R(2T )ǫ21(0) + 2ǫ1(0)

∫ T

0

R(2T − t)
∂ǫ1
∂t

dt+

∫ T

0

∫ T

0

R(2T − t− τ)
∂ǫ1
∂τ

∂ǫ1
∂t

dτdt

]
dx

+

∫ l

0

[
ǫ1(0)

∫ 2T

T

R(2T − t)
∂ǫ2
∂t

dt+

∫ 2T

T

∫ 2T−t

0

R(2T − t− τ)
∂ǫ1
∂τ

∂ǫ2
∂t

dτdt

]
dx

(4.2.7)

Now we write the functional related to our analysis, assigning the subscript E for the elastic
element and the subscript V for the viscoelastic element:

TPE =
lE
2

[
E2ǫ

2
1E(0) + 2E2ǫ1E(0)

∫ T

0

∂ǫ1E
∂t

dt+ E2

∫ T

0

∂ǫ1E
∂τ

dτ

∫ T

0

∂ǫ1E
∂t

dt

]

+
lV
2

[
RV (2T )ǫ

2
1V (0) + 2ǫ1V (0)

∫ T

0

RV (2T − t)
∂ǫ1V
∂t

dt+

∫ T

0

∫ T

0

RV (2T − t− τ)
∂ǫ1V
∂τ

∂ǫ1V
∂t

dτdt

]

+lE

[
E2ǫ1E(0)

∫ 2T

T

∂ǫ2E
∂t

dt+ E2

∫ 2T

T

∫ 2T−t

0

∂ǫ1E
∂τ

∂ǫ2E
∂t

dτdt

]

+lV

[
ǫ1V (0)

∫ 2T

T

RV (2T − t)
∂ǫ2V
∂t

dt+

∫ 2T

T

∫ 2T−t

0

RV (2T − t− τ)
∂ǫ1V
∂τ

∂ǫ2V
∂t

dτdt

]

(4.2.8)

The following substitutions are performed:

ǫ1i = ǫ′1 = ǭ ·H(t) i = E, V (4.2.9)

namely, we assign to the admissible solution over the first subinterval a mean value of strain

ǭ =
δ(t)

l
=

∆

l
· (t) (4.2.10)
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As for the second subinterval, we superimpose the exact solution of the problem, already
calculated:

ǫ2V =
∆lV
lV

=
uM

lV

ǫ2E =
∆lE
lE

=
δ(t)− uM

lE

(4.2.11)

considering that uM is a function of l · ǭ.
Making such substitutions within the functional (4.2.8) and performing some calculation, one
gets:

TPE =
1

2
· l · ǭ2 ·RTPE(2T ) (4.2.12)

In Figure 4.5 it is proved that:

1

2
Rh(2T ) · ǭ2 ≤ 1

2
·RTPE(2T ) · ǭ2 ⇒ Rh(2T ) ≤ RTPE(2T ) (4.2.13)

Figure 4.5: Normalized homogenized relaxation kernel Rh(t)/E2 as a function of time t. Com-
parison between the mean value, the homogenized value and the relaxation kernel calculated
with the TPE functional of a system with elastic and viscoelastic materials arranged in series.
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4.3 Numerical tests on shear kernels

In this Section we will consider only shear viscous kernels.
In order to obtain numerical results, we now consider viscoelastic phases governed by a

standard three-parameter solid rheologic model of the Kelvin–Voigt (or Zener) type, for which,
for a generic phase (i), the shear relaxation kernel is written as follows (Bland, 1960):

R
(i)
S (t) = (G

(i)
E +G

(i)
V )−G

(i)
V

[
1− exp

(
−G

(i)
V t

η
(i)
V

)]
(4.3.1)

where G
(i)
E and G

(i)
V are the shear moduli of the viscoelastic material, and η

(i)
V is the viscosity

coefficient. The corresponding shear creep kernel reads as follows (Bland, 1960):

C
(i)
S (t) =

1

(G
(i)
E +G

(i)
V )

+
G

(i)
V

G
(i)
E (G

(i)
E +G

(i)
V )

[
1− exp

(
− G

(i)
E G

(i)
V t

η
(i)
V (G

(i)
E +G

(i)
V )

)]
(4.3.2)

The performance of bounds (4.1.36) – (4.1.39) was checked against Finite Element results
obtained by means of the commercial code ABAQUS (Hibbitt et al., 2018). ABAQUS allows
the modelling of linear viscoelastic materials through the definition of material parameters
associated to the Prony series for relaxation only; this, for a Kelvin–Voigt material and for
each phase (i), is written in ABAQUS in the following form:

τ (i)(t) = G
(i)
0

∫ t

0

{
1− G

(i)
1

G
(i)
0

[
1− exp

(
−G

(i)
1 τ

η
(i)
1

)]}
γ̇(i) dτ, i = 1, . . . , N (4.3.3)

and requires in input the values of G
(i)
0 , G

(i)
1 /G

(i)
0 , and η

(i)
1 /G

(i)
1 , i = 1, . . . , N . A match between

eqs. (4.3.3) and (4.3.1) shows immediately that, in order to establish equivalence between

ABAQUS and analytical results, one needs to set G
(i)
0 = G

(i)
E +G

(i)
V , G

(i)
1 = G

(i)
V , and η

(i)
1 = η

(i)
V .

Several square RVEs with unit sides have been constructed, with different microstructures,
each possessing at least a 10 × 10 array of inclusions of different shapes. A plane strain sim-
ple shear problem was considered, applying, in the case of relaxation, boundary displacements
corresponding to a constant unit value for the average in-plane shear strain, and, for creep,
boundary tractions corresponding to a unit value for the average in-plane shear stress. This
setup represents of course a transversely isotropic problem, not a fully isotropic one; neverthe-
less, the considered loading conditions allow one to obtain information about the homogenized
shear modulus of a macroscopically isotropic material.

Both loading conditions were applied as unit steps at t = 0. Quadrilateral 8-noded
plane strain elements with reduced integration (CPE8R in ABAQUS notation) have always been
adopted. At least 100 elements per each side of the RVE were adopted, arriving at 1000 per
side in the case of the most complex microstructures.

The first set of analyses was run considering a two-phase material, the first (i = 1) linear
elastic and the second (i = 2) linear viscoelastic. The material data have been taken equal to
those adopted in Lahellec and Suquet (2007), i.e.,
c1 = 0.4; G(1) = Gel = 166650 MPa
c2 = 0.6; G

(2)
E = 26920 MPa; G

(2)
V = GV = 13460 MPa; η

(2)
V = ηV = 10000 MPa sec

The bulk modulus of the elastic phase plays no role (anyway, we set ν(1) = 0), and that of the
viscous phase has been set equal to zero.

We first checked the validity of the bounds with this set of data for all the considered
RVEs. Figures 4.6 and 4.7 report the relevant results, the first for relaxation and the second for
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creep. In both Figures the time has been normalized by the relaxation time tV = ηV /GV ; the
curves of Figure 4.6 plot the relaxation function normalized by the elastic shear modulus Gel,
and those of Figure 4.7 plot the creep function normalized once more by Gel. All the considered
RVEs yield both families of curves lying within the respective bounds, and all tend to furnish
similar relaxation and creep curves. In the rest of the examples we have considered just one of
these RVEs, with the most (quasi) random microstructure.

Figure 4.6: Normalized homogenized shear relaxation kernel Rh(t)/Gel as a function of nor-
malized time t/tV for a 2-phase composite. Solid thick curves with white symbols plot lower
(squares, eq. (4.1.38)) and upper (diamonds, eq. (4.1.36)) bounds; thin lines plot FEM solu-
tions.
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Figure 4.7: Normalized homogenized shear creep kernel Ch(t)Gel as a function of normalized
time t/tV for a 2-phase composite. Solid thick curves with white symbols plot lower (squares,
eq. (4.1.39)) and upper (diamonds, eq. (4.1.37)) bounds; thin lines plot FEM solutions.

A second group of analyses keeps fixed the volume fractions of the two phases, c1 = 0.4
and c2 = 0.6, and explores the sensitivity to the contrast between the elastic shear moduli
of the two phases. Denoting by k = Gel/(G

(2)
E + G

(2)
V ) this contrast, the starting data of the

previous Figures have all k = 4.1271; three more cases have been run, with k = 0.1, k = 1, and
k = 10, respectively.
Figures 4.8 and 4.9 plot now, again as a function of the normalized time, the relative errors
between the bounds on the viscous kernels and the FEM results. Figure 4.8 refers to relaxation,
and Figure 4.9 to creep. Here all the white symbols are lower bound errors, and all the black
symbols refer to upper bound errors. Both figures show that all the bounds lie in their proper
portion of the plane, and that the best results, as obvious, occur for k = 1. The errors remain
for all times of the same order of magnitude (±80% in the worst cases) as the errors on the
instantaneous, (elastic, time t = 0) moduli, and in some cases increase by a small amount for
increasing time, in others decrease.
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Figure 4.8: Relative error curves for the homogenized shear relaxation kernel Rh(t) as a function
of normalized time t/tV for a 2-phase composite, for various values of the contrast parameter

k = Gel/(G
(2)
E +G

(2)
V ). White symbols denote lower bound errors (results of bound (4.1.38) minus

FEM results divided by FEM results); black symbols denote upper bound relative errors. Other
parameters as indicated in the text.
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Figure 4.9: Relative error curves for the homogenized shear creep kernel Ch(t) as a function
of normalized time t/tV , for a 2-phase composite, for various values of the contrast parameter

k = Gel/(G
(2)
E +G

(2)
V ). White symbols denote lower bound errors (results of bound (4.1.39) minus

FEM results divided by FEM results); black symbols denote upper bound relative errors. Other
parameters as indicated in the text.

Figures 4.10 and 4.11 show results concerning the sensitivity to the volume fractions,
keeping the contrast equal to that of the first case, i.e., k = 4.1271. Four cases of volume
fractions have been considered, namely c1 = 0.4 as before, c1 = 0.1, c1 = 0.6, and c1 = 0.9.
This forced the adoption of different meshes for each case, with very dense ones for the case
c1 = 0.9.
Figures 4.10 and 4.11 plot again, still as a function of normalized time, the relative errors
between the bounds on the viscous kernels and the FEM results, Figure 4.10 for relaxation and
Figure 4.11 for creep. Both Figures show once more that all the bounds lie in their proper
portion of the plane. The errors are now generally smaller than in the previous two figures,
even for extreme values of the volume fractions; this is probably due to the value of the contrast
k. The errors are always of the same order of magnitude as the initial, purely elastic ones.
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Figure 4.10: Relative error curves for the homogenized shear relaxation kernel Rh(t) as a
function of normalized time t/tV , for a 2-phase composite, for various values of the volume
fraction of the elastic phase c1. White symbols denote lower bound errors (results of bound
(4.1.38) minus FEM results divided by FEM results); black symbols denote upper bound relative
errors. Other parameters as indicated in the text.
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Figure 4.11: Relative error curves for the homogenized shear creep kernel Ch(t) as a function
of normalized time t/tV , for a 2-phase composite, for various values of the volume fraction of
the elastic phase c1. White symbols denote lower bound errors (results of bound (4.1.39) minus
FEM results divided by FEM results); black symbols denote upper bound relative errors. Other
parameters as indicated in the text.

The next figures, 4.12 and 4.13, plot once more relative errors between analytical bounds
and FEM results considering variations of the ratio g1 = G

(2)
V /(G

(2)
E +G

(2)
V ) in which the value

of G
(2)
V has been always kept fixed to its starting value G

(2)
V = 13460 MPa, so as to consider

also limit cases of both absence of elasticity and very high elasticity in the viscous phase.
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Figure 4.12: Relative error curves for the homogenized shear relaxation kernel Rh(t) as a
function of normalized time t/tV , for a 2-phase composite, for various values of the ratio g1 =

G
(2)
V /(G

(2)
E + G

(2)
V ) between the shear modulus of the viscous phase and the global one. White

symbols denote lower bound errors (results of bound (4.1.38) minus FEM results divided by
FEM results); black symbols denote upper bound relative errors. Other parameters as indicated
in the text.
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Figure 4.13: Relative error curves for the homogenized shear creep kernel Ch(t) as a function of

normalized time t/tV , for a 2-phase composite, for various values of the ratio g1 = G
(2)
V /(G

(2)
E +

G
(2)
V ) between the shear modulus of the viscous phase and the global one. White symbols denote

lower bound errors (results of bound (4.1.39) minus FEM results divided by FEM results); black
symbols denote upper bound relative errors. Other parameters as indicated in the text.

Figure 4.14 and 4.15, which still plot relative errors, refer to varying the relaxation time
tV = ηV /GV in the viscous phase, considering 4 different values ηV = 10, 1000, 10000, and
1000000 sec, and keeping all the other parameters fixed at their basic values reported above.
Note that now the nondimensional time axes are in log scale, since the adoption of relaxation
times covering a wide range of values — from tV = 7.429 × 10−4 sec to tV = 74.2942 sec —
produces viscous kernels so different from each other that they can be plotted superimposed
only by using such a scale.

111



CHAPTER 4. TIME DOMAIN ANALYTICAL BOUNDS TO THE OVERALL
PROPERTIES OF LINEAR VISCOELASTIC COMPOSITES: EXPLICIT BOUNDS TO
THE HOMOGENIZED RELAXATION AND CREEP KERNELS

Figure 4.14: Relative error curves for the homogenized shear relaxation kernel Rh(t) as a
function of normalized time t/tV , for a 2-phase composite, for various values of the relaxation

time tV = η
(2)
V /G

(2)
V . White symbols denote lower bound errors (results of bound (4.1.38) minus

FEM results divided by FEM results); black symbols denote upper bound relative errors. Other
parameters as indicated in the text.
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Figure 4.15: Relative error curves for the homogenized shear creep kernel Ch(t) as a function
of normalized time t/tV , for a 2-phase composite, for various values of the relaxation time

tV = η
(2)
V /G

(2)
V . White symbols denote lower bound errors (results of bound (4.1.39) minus

FEM results divided by FEM results); black symbols denote upper bound relative errors. Other
parameters as indicated in the text.

All these results confirm the validity of the bounds derived in this work.
Finally, four more analyses — two relaxation and two creep — have been run for the case

of a material having one elastic and three viscoelastic phases, in order to check the correctness
of the bounds also in the presence of a more complicated microstructure. A first group concerns
a high volume fraction of the elastic phase, with c1 = 0.9; a second group the opposite case,
with c1 = 0.1.

The adopted data are as follows:

• case with c1 = 0.9:
G(1) = Gel = 166650 MPa
c2 = 0.05; G

(2)
E = 26920 MPa; G

(2)
V = 13460 MPa; η

(2)
V = 20000 MPa

c3 = 0.03333; G
(3)
E = 5384 MPa; G

(3)
V = 48456 MPa; η

(3)
V = 35998 MPa

c4 = 0.01667; G
(4)
E = 13056.2 MPa; G

(4)
V = 403.8 MPa; η

(4)
V = 150.01 MPa

• case with c1 = 0.1:
G(1) = Gel = 166650 MPa
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c2 = 0.5; G
(2)
E = 13056.2 MPa; G

(2)
V = 403.8 MPa; η

(2)
V = 150.01 MPa

c3 = 0.3; G
(3)
E = 5384 MPa; G

(3)
V = 48456 MPa; η

(3)
V = 35998 MPa

c4 = 0.1; G
(4)
E = 26920 MPa; G

(4)
V = 13460 MPa; η

(4)
V = 20000 MPa

These data cover a rather wide range of both relaxation times and of contrasts between elasticity
of the elastic and the viscous phases, and are expected to provide a significantly severe test for
the bounding equations.
Figures 4.16 and 4.17 now plot directly the normalized relaxation and creep kernels, in the
same plot, as functions of a time t normalized with respect to the relaxation time tV,m of the
viscous phase with the highest volume fraction. Figure 4.16 refers to the case c1 = 0.1 (small
elastic fraction), and Figure 4.17 to the case c1 = 0.9 (high elastic fraction). In Figure 4.17
all the relaxation curves have been amplified by a factor of 10 in order to better show them,
otherwise they would all appear as superimposed at y ≈ 0.

Figure 4.16: Normalized homogenized shear kernels as a function of normalized time t/tV for
a 4-phase composite, with c1 = 0.9 (elastic), and c2 = 0.05, c3 = 0.03333, c4 = 0.01667 (all
viscoelastic). Thin curves with black symbols plot lower (right triangles, eq. (4.1.39)) and
upper (squares, eq. (4.1.37)) bounds on the normalized homogenized creep kernel Ch(t)Gel;
thin curves with white symbols plot lower (right triangles, eq. (4.1.38)) and upper (squares,
eq. (4.1.36)) bounds on the normalized homogenized relaxation kernel Rh(t)/Gel; thick lines
plot FEM solutions. Other parameters as indicated in the text.
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Figure 4.17: Normalized homogenized shear kernels as a function of normalized time t/tV for
a 4-phase composite, with c1 = 0.1 (elastic), and c2 = 0.5, c3 = 0.3, c4 = 0.1 (all viscoelastic).
Thin curves with black symbols plot lower (right triangles, eq. (4.1.39)) and upper (squares, eq.
(4.1.37)) bounds on the normalized homogenized creep kernel Ch(t)Gel; thin curves with white
symbols plot lower (right triangles, eq. (4.1.38)) and upper (squares, eq. (4.1.36)) bounds on
the normalized homogenized relaxation kernel Rh(t)/Gel; thick lines plot FEM solutions. Other
parameters as indicated in the text.

All these results confirm once more the validity of the newly formulated bounds.
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4.4 Numerical tests on volumetric kernels

In this Section we will consider only volumetric strains, unlike in the previous Section.
In order to obtain numerical results, we now consider viscoelastic phases governed by a

standard two-parameter solid rheologic model of the Maxwell type, for which, for a generic
phase (i), the volumetric relaxation kernel is written as follows (Migliacci, 1979):

R
(i)
V (t) = K

(i)
V exp

(
−K

(i)
V t

η
(i)
V

)
(4.4.1)

where K
(i)
V is the bulk modulus of the viscoelastic material, and η

(i)
V is the viscosity coefficient.

The corresponding volumetric creep kernel reads as follows (Migliacci, 1979):

C
(i)
V (t) =

1

K
(i)
V

+
t

η
(i)
V

(4.4.2)

Bounds (4.1.36) – (4.1.39) are compared with Finite Element results obtained by means of
the commercial code ABAQUS (Hibbitt et al., 2018). ABAQUS allows the modelling of linear
viscoelastic materials through the definition of material parameters associated to the Prony
series for relaxation only; this, for a Maxwell material and for each phase (i), is written in
ABAQUS in the following form:

p(i)(t) = −K
(i)
0

∫ t

0

{
1− K

(i)
1

K
(i)
0

[
1− exp

(
−K

(i)
1 τ

η
(i)
1

)]}
ǫ̇vol (i) dτ, i = 1, . . . , N (4.4.3)

and requires in input the values of K
(i)
0 , K

(i)
1 /K

(i)
0 , and η

(i)
1 /K

(i)
1 , i = 1, . . . , N . A match

between eqs. (4.4.3) and (4.4.1) shows immediately that, in order to establish equivalence

between ABAQUS and analytical results, one needs to set K
(i)
0 = K

(i)
V , K

(i)
1 = K

(i)
0 = K

(i)
V , and

η
(i)
1 = η

(i)
V .

Two example are presented: the first one is a sphere, the second one is a RVE with
unit sides with different microstructures, each possessing inclusions of different size. We start
analysing the relaxation kernel, by applying boundary displacements corresponding to a con-
stant unit value for the volumetric strain. This Section shows numerically that upper bounds
are not valid for systems subject to volumetric strains and the analysis was limited only to
relaxation kernels.
The considered loading conditions allow one to obtain information about the homogenized bulk
modulus of a macroscopically isotropic material.

Loading conditions were applied as unit steps at t = 0. 4-node linear standard tetrahedral
elements (3D stress family) (C3D4 in ABAQUS notation) have always been adopted.
The set of analyses was run considering a two-phase material, the first (i = 1) linear elastic
and the second (i = 2) linear viscoelastic. The considered material data are:
c1 = 0.7; K(1) = Kel = 1666.6667 MPa
c2 = 0.3; K

(2)
V = 25000 MPa; η

(2)
V = ηV = 20000 MPa sec

The Poisson’s coefficient of both the elastic and the viscoelastic phase has been set equal to
ν(1) = ν(2) = 0.3.
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4.4.1 Analysis of a 3D system with volumetric strains

Elastic body with viscoelastic inclusions

Consider the problem of Figure 4.18, represented in 3D in ABAQUS.

Figure 4.18: Sphere consisting of two phases with one inclusion, 3D representation from the
program ABAQUS.

Meaning a sphere consisting of two phases, the first one with volume V1 and the second one
with volume V2, subjected to radial displacement δ uniformly distributed, which creates a vol-
umetric strain.
The analysis performed with one inclusion is replicated using four and eight inclusions (repre-
sented in Figures 4.19-4.20).

Figure 4.19: Sphere consisting of two phases with four inclusions, 3D representation in
ABAQUS.
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Figure 4.20: Sphere consisting of two phases with eight inclusions, 3D representation in
ABAQUS.

Figure 4.21 plots the relaxation function normalized by the elastic bulk modulus Kel and
shows a comparison between the mean value, defined in (4.1.36), and the homogenized value
of the relaxation function using one, four and eight inclusions. The time has been normalized
by the relaxation time tV = ηv/KV .
It is proved once again that the mean value does not constitute an upper bound for a system
subject to volumetric strains.
The enlargement of Figure 4.22 shows the variation of the homogenized value of the relaxation
kernel using one, four and eight inclusions. The case with eight inclusions overlaps the one with
four inclusions. These results are larger than the case with just one inclusion at the beginning
of the time range, afterwards they get lower and, finally, all results overlap at the end of the
time range.
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Figure 4.21: Normalized homogenized volumetric relaxation kernel Rh(t)/Kel as a function
of normalized time t/tV . Comparison between the mean value (4.1.36) and the homogenized
relaxation kernel of a 3D system with volumetric strains and viscoelastic inclusions using,
respectively, one, four and eight inclusions.

Figure 4.22: Normalized homogenized volumetric relaxation kernel Rh(t)/Kel as a function
of normalized time t/tV . Comparison between the mean value (4.1.36) and the homogenized
relaxation kernel of a 3D system with volumetric strains and viscoelastic inclusions using,
respectively, one, four and eight inclusions - enlargement.
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Viscoelastic body with elastic inclusions

Consider the same problem as in the previous Section, this time assigning an elastic material
to the inclusions and a viscoelastic material to the matrix.
The whole process is not presented again for the sake of brevity, only the final results with one,
four and eight inclusions (calculated with ABAQUS) are summarized in Figures 4.23-4.24.
Figure 4.23 shows a comparison between the mean value (4.1.36) and the homogenized value
of the relaxation function using one, four and eight inclusions.
It is proved once again that the mean value does not constitute an upper bound for a system
subject to volumetric strains.
The enlargement of Figure 4.24 shows the variation of the homogenized value with one, four and
eight inclusions. The case with eight inclusions overlaps the one with four inclusions. These
results are larger than the case with just one inclusion at the beginning of the time range,
afterwards they get lower and, finally, all results overlap at the end of the time range.

Figure 4.23: Normalized homogenized volumetric relaxation kernel Rh(t)/Kel as a function of
normalized time t/tV . Comparison between the mean value (4.1.36) and the homogenized re-
laxation kernel of a 3D system with volumetric strains and elastic inclusions using, respectively,
one, four and eight inclusions.
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Figure 4.24: Normalized homogenized volumetric relaxation kernel Rh(t)/Kel as a function of
normalized time t/tV . Comparison between the mean value (4.1.36) and the homogenized re-
laxation kernel of a 3D system with volumetric strains and elastic inclusions using, respectively,
one, four and eight inclusions - enlargement.

4.4.2 Analysis of a RVE with volumetric strains

Elastic body with viscoelastic inclusions

Consider the problem of Figure 4.25, represented in 3D in ABAQUS.

Figure 4.25: RVE consisting of two phases with different inclusions, 3D representation in
ABAQUS.
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Meaning a RVE consisting of two phases, the first one with volume V1 and the second one
with volume V2, subjected to displacement δ perpendicular to the external faces of the cube.
It is a combination of cubes (5×5×5), each containing seven spherical inclusions of different
sizes.
Figure 4.26 plots the relaxation function normalized by the elastic elastic bulk modulus Kel and
shows a comparison between the mean value, defined in (4.1.36), and the homogenized value
of the relaxation function. The time has been normalized by the relaxation time tV = ηv/KV .
It is proved once again that the mean value does not constitute an upper bound for a system
subject to volumetric strains.

Figure 4.26: Normalized homogenized volumetric relaxation kernel Rh(t)/Kel as a function
of normalized time t/tV . Comparison between the mean value (4.1.36) and the homogenized
relaxation kernel of a 3D RVE system with volumetric strains and viscoelastic inclusions.
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Viscoelastic body with elastic inclusions

Consider the same problem as in the previous Section, this time assigning an elastic material
to the inclusions and a viscoelastic material to the matrix.
The whole process is not presented again for the sake of brevity, only the final result multiple
inclusions (calculated with ABAQUS) is summarized in Figure 4.27, which shows a comparison
between the mean value, defined in (4.1.36), and the homogenized value of the relaxation
function.
It is proved once again that the mean value does not constitute an upper bound for a system
subject to volumetric strains.

Figure 4.27: Normalized homogenized volumetric relaxation kernel Rh(t)/Kel as a function
of normalized time t/tV . Comparison between the mean value (4.1.36) and the homogenized
relaxation kernel of a 3D RVE system with volumetric strains and elastic inclusions.

123



CHAPTER 4. TIME DOMAIN ANALYTICAL BOUNDS TO THE OVERALL
PROPERTIES OF LINEAR VISCOELASTIC COMPOSITES: EXPLICIT BOUNDS TO
THE HOMOGENIZED RELAXATION AND CREEP KERNELS

4.5 Conclusions

We consider the case of macroscopically isotropic materials.
Upper and lower bounds have been described, as extensions of the bounds derived by Voigt
and Reuss from extremal formulation valid for elasticity.
From Carini and Mattei (2015) upper bounds are obtained and proved only for deviatoric
strains and several numerical simulations have been performed in order to verify these bounds,
even with volumetric strains.
The lower bounds have already been proposed by Huet (1995) for the scalar homogenized
relaxation Rh(t) and creep Ch(t) kernel components, who derived them from the Principle of
Virtual Work. Therefore, there was no need in testing them again (in fact they only appear in
the analysis of shear kernels).
On the other hand, the upper bounds are tested for bodies subjected to either volumetric or
deviatoric strains.
From the first set of analyses, as expected, the upper bounds prove to be verified for deviatoric
strains.
Nevertheless, when a body is subjected to volumetric strains, the proposed upper bound is no
longer satisfied.
This particular issue could be an interesting starting point for subsequent research works.
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Chapter 5

A variational approach to fracture
mechanics

Notation

Greek and latin letters

• ǫij: Small strain tensor components;

• Fj: Body force vector components;

• fj: Surface traction vector components;

• V : Volume of the solid body;

• Sf/Γp: Loaded region of the boundary;

• uj: Displacement vector components;

• h: Hardening component for the Capurso-Maier functional;

• λ: Plastic multiplier;

• ϕ: Yield function;

• ūj: Prescribed displacement vector components;

• Su/Γu: Constrained region of the boundary;

• VE: Volume of the solid body in the elastic phase;

• VP : Volume of the solid body in the plastic phase;

• Ω∞: Infinite domain of the fracture mechanics problem;

• w(x): Fracture opening;

• p(w): Internal pressure of the fracture;

• l: Crack length;

• G: Energy-release rate;
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• E: Young’s modulus;

• H: Hardening term;

• G0: Critical value of the Energy-release rate;

• η: Lagrange multiplier;

• Dl
j: Concentrated displacement discontinuity components;

• ν: Poisson’s ratio;

• K: Stress intensity factors vector;

• s(t): Fracture extension in Salvadori and Carini (2011);

• ϑ(K): Actual crack state;

• KC
1 : Fracture toughness;

• κ(t): Load factor;

• E: Safe equilibrium domain;

• Ω: Region occupied by a solid body;

• p̄: Prescribed pressure inside the fracture;

• Γw: Reference surface for the crack;

• x: Field point;

• ξ: Source point;

• r: Distance between the field point and the source point;

• f i: Vector of known terms;

• ni: Unit outward normal vector components.

Symbols

• =:: Is defined as;

• :̇ Incremental variable;

• :̂ Admissible term;

• L: Lagrangian functional;

•
E: Elastic component of a term;

•
P : Plastic component of a term;

• ∈: Belongs to.
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Operators and functions

• FCM : Capurso-Maier functional;

• Dijhk: Constitutive operator;

• /i : Partial derivative operation;

• ∆: Subtraction operator;

• TPE: Total Potential Energy functional;

• Gij: Green’s operator;

• χ: Salvadori and Carini functional;

• TPEext: Total Potential Energy functional extended to the 2D/3D case;

• FV : Viscoelastic fracture mechanics functional;

• Rpp: Viscoelastic operator.
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5.1 Introduction

The major aim of fracture mechanics is to find out which cracks constitute a potential risk for
the global or partial failure of the structure and which do not.
From a practical point of view many cracks can be considered as harmless since they do not
lead to failure of the structure but, it is well-known that micro-cracks and micro processes of
de-cohesion deeply influence the macroscopic crack growth in materials.
The crack growth in materials can be regarded as an increasing of the opening displacement
between the free surfaces that constitute the macroscopic crack. The evaluation of this param-
eter is important in structural design in order to investigate cracks propagation. The study of
how cracks could develop inside the hosting medium is of fundamental importance in order to
assess the safety of the component. In the present work, brittle materials are considered, i.e.
the cohesion between surfaces is here neglected; furthermore non-penetrative condition between
free surfaces is assumed and the loading conditions are assumed to be quasi-static, i.e. frictional
or dynamic effects are assumed to be negligible.

Due to the importance of the topic, expecially from an engineering perspective, in this Chapter
the aim is to derive new variational formulations and, in particular, new functionals for the
study of the fracture mechanics problem.
In the first part of the Chapter, a functional is derived from the Total Potential Energy func-
tional introduced by Capurso and Maier for the elastoplastic problem, expressed in an incre-
mental form. In order to fully write the functional for a straight crack in an infinite domain
Ω∞, the variation of the energy-release rate is defined and a hardening component is obtained.
Moreover, a formal analogy between the variation of the energy release-rate and the yield func-
tion for elastoplasticity is presented, as well as complementarity conditions, reminiscence of
Kuhn-Tucker conditions. A minimum principle is proved for the derived functional and sub-
sequently it is rewritten in a one-field form, depending either on the variation of the fracture
opening caused by a crack elongation at constant pressure, or on the plastic distortion itself.
Furthermore, an analogy between the obtained one-field functional dependent only on the
crack elongation and the functional derived in Salvadori-Carini (2011) is presented. Finally,
the formulation is generalized to the case of a finite body in a two/three dimensional space and
Bramble and Pasciak method is used to prove the minimum principle.
In the second part of the Chapter, a hint is given about a Free Energy type functional, deriving
from Francfort-Marigo formulation (2008) of the fracture mechanics problem, which could be
used to extend the fracture mechanics formulation to viscoelastic composites, thus to time-
dependent problems.
In fact, since 1960 proposed models and methods for the study of crack propagation are referred
only to elastic media. A more accurate theory should take into account the viscous materials
properties and the exit from the elastic field of the material near the crack tip. The aim of
future research is trying to extend the energetic formulation of Francfort and Marigo in order
to simulate complex dynamic phenomena in viscoelastic media.
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5.2 Capurso-Maier functional

5.2.1 Introduction

The aim of this work is to derive a Total Potential Energy (TPE) functional for fracture
mechanics, analogous to the two-field functional FCM used in elastoplastic formulation, as the
one introduced by Capurso-Maier (Corradi dell’Acqua, 1992). The functional is expressed in
incremental form as:

FCM( ˙̂ui,
˙̂
λ) =

1

2

∫

V

Dijhk
˙̂ǫij ˙̂ǫhk dV −

∫

V

Ḟj
˙̂uj dV −

∫

Sf

ḟj ˙̂uj dS +
1

2

∫

V

h
˙̂
λ2 dV (5.2.1)

The functional must respect the following constraints

˙̂ǫij =
1

2

(
˙̂ui/j + ˙̂uj/i

)
− ∂ϕ

∂σij

˙̂
λ (5.2.2)

˙̂uj = ˙̄uj on Su (5.2.3)

˙̂
λ = 0 in VE (5.2.4)

˙̂
λ ≥ 0 in VP (5.2.5)

where Su/Γu is the constrained region of the boundary, VE is the volume of the solid body in
the elastic phase and VP is the volume of the solid body in the plastic phase; To begin with,
functional (5.2.1) can be written in a non-incremental form, exploiting Green’s operator Gpp,
that represents the pressure p on a normal surface n(x), due to a unitary relative displacement
concentrated in a point ξ ∈ Ω and acting on the unlimited space Ω∞.
In the case of a symmetric problem, as the one sketched in Fig. 5.1, the functional takes the
form:

TPE = −1

2

∫ l

0

∫ l

0

Gpp(x− ξ)w(ξ)w(x) dξdx−
∫ l

0

p(x)w(x) dx (5.2.6)

Figure 5.1: Fracture mechanics problem, defined in an infinite domain Ω∞.

The first double integral in (5.2.6) is a strain energy, whereas the second one is the internal
loads potential.
p(x) is the pressure inside the fracture, w(x) is the opening of the fracture, and 2l is the length
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of the fracture.
Interpreting the first integral in (5.2.6) according to the Hadamard’s sense, the equilibrium
equation can be resembled:

−
∫ l

0

Gpp(x− ξ)w(ξ) dξ = p(x) (5.2.7)

Substituing the latter into (5.2.6), we get:

TPE = −1

2

∫ l

0

p(w)w(x) dx (5.2.8)

5.2.2 Energy-release rate G

The energy-release rate G, if p is prescribed (p(w) = p̄), is expressed as:

G = −∂TPE

∂l

∣∣∣∣
p̄

(5.2.9)

Bringing the derivation formula inside the integral and substituting (5.2.8) in (5.2.9) one has:

G =
1

2

∫ l

0

(
p(w)

∂w

∂l
(x)

)∣∣∣∣
p̄

dx+
1

2
p(l)w(l) =

1

2

∫ l

0

(
p(w)

∂w

∂l
(x)

)∣∣∣∣
p̄

dx (5.2.10)

in view of condition w(l) = 0.

In order to verify the validity of formula (5.2.10), one considers a crack immersed in an
infinite domain Ω∞ with constant internal pressure p.
Fracture opening reads (Carpinteri, 1992):

w(x) =4p · l

E

[
1−

(x
l

)2
]1/2

(5.2.11)

Its derivative with respect to l is:

∂w

∂l
=

4p

E

1√
1−

(
x
l

)2 (5.2.12)

Substituting (5.2.12) in (5.2.10), the latter becomes:

G =
2p2

E

∫ l

0

1√
1−

(
x
l

)2 dx (5.2.13)

Performing the following change of variable

x

l
= X dX =

dx

l
dx = l · dX (5.2.14)

x = 0 ⇒ X = 0 (5.2.15)

x = l ⇒ X = 1 (5.2.16)
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equation (5.2.13) can be expressed as:

G =
2p2l

E

∫ 1

0

1√
1−X2

dX, (5.2.17)

thus confirming the attainment of the well-known solution

G =
πlp2

E
(5.2.18)

5.2.3 Definition of Ġ

In order to write functional (5.2.1) in an incremental form, the form of Ġ is needed.
To this aim, one recalls the expression of the energy-release rate G, namely:

G =
1

2

∫ l

0

p(w)
∂w(x)

∂l
dx (5.2.19)

Bearing in mind that
∂w

∂l
· l̇ represents the variation of the fracture opening w caused by a crack

elongation of constant pressure, one has

∂w

∂l

∣∣∣∣
p=0

· l̇ = 0, (5.2.20)

if there is no crack elongation.
Therefore, it is possible to state that the crack opens linearly with the superimposed load, at

the same l̇ and
∂w

∂l
could be treated as a linear function of p, namely

∂w

∂l
= p · f(x, l) (5.2.21)

with f(x, l) independent from p.
Thus, the energy release rate (5.2.19) becomes:

G =
1

2

∫ l

0

p2 · f(x, l) dx (5.2.22)

The variation of G can thus be additively decomposed in a contribution due to the pressure
variation ṗ and a contribution due to the crack elongation l̇. It reads:

Ġ =
∂G

∂p
· ṗ+ ∂G

∂l
· l̇

=
1

2

(∫ l

0

2p · f(x, l) dx
)
· ṗ+ 1

2

(∫ l

0

p2 · ∂f(x, l)
∂l

dx

)
· l̇

(5.2.23)

Equation (5.2.23) does not contain boundary terms coming from the derivation inside an inte-
gral, because, there, the load is zero (p = 0).
Considering that in this case ṗ is constant with respect to the variable x and recalling (5.2.21),
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Ġ can be expressed as

Ġ =

∫ l

0

ṗ · ∂w
∂l

dx+

(
1

2

∫ l

0

p · ∂
2w

∂l2
dx

)
· l̇ (5.2.24)

The second term of equation (5.2.24) resembles the hardening component introduced in plastic-
ity theory. Considering in fact the formal analogy that exists between the energy-release rate
G and the yield function ϕ (see Salvadori and Carini, 2011 for details), one has:

ϕ̇ =
∂ϕ

∂σ
· σ̇ −H · λ̇ (5.2.25)

It is worth noting that, contrarily to what happens in plasticity, in fracture mechanics the
second term in (5.2.25) has a positive sign, thus decreasing the resistance. It can be considered
as a negative hardening.
From a comparison between equations (5.2.24) and (5.2.25) the hardening term can be expressed
as

(
1

2

∫ l

0

p · ∂
2w

∂l2
dx

)
= H (5.2.26)

It is worth mentioning that H is not known a priori and this constitutes a huge issue for
numerical analyses.
In order to evaluate the correctness of the form (5.2.24), one considers the benchmark of a
straight crack in an infinite domain Ω∞.
In this case, as already proved in (5.2.18), the energy-release rate holds:

G =
π

E
lp2 (5.2.27)

Its variation reads:

Ġ =
∂G

∂p
· ṗ+ ∂G

∂l
· l̇

=
π

E

[
2p · l · ṗ+ p2 · l̇

] (5.2.28)

Comparing equation (5.2.24) to (5.2.28) one obtains:

∫ l

0

ṗ · ∂w
∂l

dx = 2
π

E
pl · ṗ ⇒

∫ l

0

∂w

∂l
dx = 2pl

π

E
(5.2.29)

1

2

∫ l

0

p · ∂
2w

∂l2
· l̇ dx =

π

E
p2 · l̇ ⇒ 1

2

∫ l

0

∂2w

∂l2
dx = p

π

E
(5.2.30)

Considering that the fracture opening increment can be additively decomposed in a contribution
due to load increment ṗ and a contribution due to plastic distortion l̇, one has

ẇ =
∂w

∂p
· ṗ+ ∂w

∂l
· l̇ = ẇE + ẇP (5.2.31)
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In the light of equation (5.2.31), the parameter Ġl̇ gains the form

Ġl̇ =

∫ l

0

ṗ · ∂w
∂l

l̇ dx+

(
1

2

∫ l

0

p · ∂
2w

∂l2
dx

)
· l̇2

=

∫ l

0

ṗ · ẇP dx+H · l̇2
(5.2.32)

5.2.4 Complementarity conditions

Crack propagation is governed at time t by the following conditions, reminiscence of Kuhn-
Tucker conditions of plasticity

(G−G0)l̇ = 0 G−G0 ≤ 0 l̇ ≥ 0 (5.2.33)

In the hypothesis of irreversible crack growth, if the second condition is valid, the crack is
stationary (l̇ = 0) and if the third one is valid, it means that G has reached the critical value
G0 and the crack propagates.
Time derivation of the first of conditions (5.2.33) leads to:

Ġl̇ + (G−G0)
dl̇

dt
= 0 (5.2.34)

Analogously to what happens in plasticity, in a plastic zone, namely when G = G0, the second
term of (5.2.34) vanishes and one retrieves the so-called consistency condition, namely:

Ġl̇ = 0 (5.2.35)

Therefore, in a plastic zone, complementarity conditions can be written as:

Ġl̇ = 0 Ġ ≤ 0 l̇ ≥ 0 (5.2.36)

which complete the analogy with the complementarity conditions written in terms of the yield
function ϕ̇:

ϕ̇λ̇ = 0 ϕ̇ ≤ 0 λ̇ ≥ 0 (5.2.37)

From equation (5.2.37), the formal equality l̇ = λ̇ descends, which is proved in Salvadori and
Carini, 2011.

5.2.5 Total Potential Energy functional

The Total Potential Energy functional, written in incremental form, for an admissible solution

( ˆ̇w, ˆ̇l) is expressed as:

TPE( ˆ̇w, ˆ̇l) = −1

2

∫ l

0

∫ l

0

Gpp(x− ξ) ˆ̇wE(x) ˆ̇wE(ξ) dξdx−
∫ l

0

ṗ(x) ˆ̇w(x) dx− 1

2
H · ˆ̇l2. (5.2.38)

Functional (5.2.38) is minimized in the correspondence of the solution (ẇ, l̇), provided that the
following constraints are satisfied:

l̇ ≥ 0 if G = G0 (5.2.39)
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l̇ = 0 if G < G0. (5.2.40)

Denoting with

∆TPE = TPE( ˆ̇w)− TPE(ẇ), ∆ẇ = ˆ̇w − ẇ, ∆l̇ = ˆ̇l − l̇, (5.2.41)

it must be proved that ∆TPE ≥ 0.
Considering the last term of functional (5.2.38), which involves the hardening operator H, one
has

−1

2
Hˆ̇l2 +

1

2
Hl̇2 =− 1

2
H(ˆ̇l2 − l̇2). (5.2.42)

Since the square of the variation ∆l̇ can be expressed as

∆l̇2 =(ˆ̇l − l̇)2 = ˆ̇l2 − 2ˆ̇l · l̇ + l̇2

=(ˆ̇l2 − l̇2) + 2l̇2 − 2ˆ̇l · l̇
(5.2.43)

one finally has

(ˆ̇l2 − l̇2) = ∆l̇2 + 2l̇(ˆ̇l − l̇) = ∆l̇2 + 2∆l̇ · l̇ (5.2.44)

The result obtained in (5.2.44) is also valid for ∆ẇE.
Equation (5.2.41) thus becomes

∆TPE =− 1

2

∫ l

0

∫ l

0

Gpp(x− ξ)∆ẇE(x)∆ẇE(ξ) dξdx−
∫ l

0

ṗ(x)∆ẇ(x) dx

−
∫ l

0

∫ l

0

Gpp(x− ξ)ẇE(x)∆ẇE(ξ) dξ dx− 1

2
H∆l̇2 −H∆l̇ · l̇

(5.2.45)

The first and fourth members of (5.2.45) must satisfy the conditions already presented by Maier
and Frangi in 1998 (H must be negative and the first integral is positive due to the properties of
Gpp). Grouping these two terms and denoting them with symbol ∆∗ and recalling the property
Gpp(x− ξ) = Gpp(ξ − x) one has

∆TPE =∆∗ −
∫ l

0

ṗ(x)∆ẇ(x) dx−
∫ l

0

∫ l

0

Gpp(x− ξ)ẇE(x)∆ẇE(ξ) dξ dx−H∆l̇ · l̇

=∆∗ −
∫ l

0

ṗ(x)∆ẇE(x) dx−
∫ l

0

ṗ(x)∆ẇP (x) dx

−
∫ l

0

∫ l

0

Gpp(x− ξ)ẇE(x)∆ẇE(ξ) dξ dx−H∆l̇ · l̇

(5.2.46)

Recalling that

−
∫ l

0

Gpp(x− ξ)ẇE(ξ)dξ = ṗ(x), (5.2.47)
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equation (5.2.46) reduces to

∆TPE =∆∗ −
∫ l

0

ṗ(x)∆ẇP (x) dx−H∆l̇ · l̇

=∆∗ −
[∫ l

0

ṗ(x)
∂w

∂l
(x) dx+H · l̇

]
∆l̇

(5.2.48)

in view of the validity of complementarity conditions (5.2.36)). Since the variation of the energy
release rate Ġ can be expressed according to (5.2.24), one finally has

∆TPE =∆∗ − Ġ∆l̇

=∆∗ − Ġˆ̇l + Ġl̇
(5.2.49)

The product Ġl̇ vanishes because of the validity of consistency condition for the solution, while

−Ġˆ̇l ≥ 0. This concludes the proof, namely

∆TPE ≥ 0 (5.2.50)

Stationarity of the functional

In order to prove the stationarity of functional (5.2.38), one needs to compute its first variation.
To this aim, one denotes with TPEL the Lagrangian Functional

TPEL = −1

2

∫ l

0

∫ l

0

Gpp(x−ξ)ẇE(x)ẇE(ξ) dξdx−
∫ l

0

ṗ(x)ẇ(x) dx− 1

2
H · l̇2+η(l̇−α2) (5.2.51)

where η is a Lagrange multiplier and α2 is a necessary definite-positive parameter in order to
include the constraint of the problem.
The stationarity of TPEL with respect to η reproduces exactly the constraint l̇ ≥ 0 expressing
the irreversibility of the process. In fact, the first variation leads to the equality δη(l̇−α2) = 0
from which one has l̇ = α2 ≥ 0.
Imposing the stationarity of (5.2.51) with respect to the other variables, namely ẇE, l̇, and α,
one has

δTPEL =− 1

2

∫ l

0

∫ l

0

Gpp(x− ξ)δẇE(x)ẇE(ξ) dξdx

− 1

2

∫ l

0

∫ l

0

Gpp(x− ξ)ẇE(x)δẇE(ξ) dξdx

−
∫ l

0

ṗ(x)δẇ(x) dx− 1

2
H · δl̇l̇ − 1

2
H · l̇δl̇ + η(δl̇ − 2δαα)

=−
∫ l

0

∫ l

0

Gpp(x− ξ)ẇE(ξ)δẇE(x) dξdx

−
∫ l

0

ṗ(x)δẇ(x) dx−H · l̇δl̇ + η(δl̇ − 2δαα)
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=−
∫ l

0

∫ l

0

Gpp(x− ξ)ẇE(ξ)δẇE(x) dξdx−
∫ l

0

ṗ(x)δẇE(x) dx

−
∫ l

0

ṗ(x)δẇP (x) dx−H · l̇δl̇ + η(δl̇ − 2δαα)

=−
∫ l

0

∫ l

0

Gpp(x− ξ)ẇE(ξ)δẇE(x) dξdx−
∫ l

0

ṗ(x)δẇE(x) dx

−
∫ l

0

ṗ(x)δ

(
∂w

∂l
l̇

)
dx−H · l̇δl̇ + η(δl̇ − 2δαα)

=−
∫ l

0

∫ l

0

Gpp(x− ξ)ẇE(ξ)δẇE(x) dξdx−
∫ l

0

ṗ(x)δẇE(x) dx

−
∫ l

0

ṗ(x)
∂w

∂l
δl̇ dx−H · l̇δl̇ + η(δl̇ − 2δαα)

=−
∫ l

0

δẇE(x)

[∫ l

0

Gpp(x− ξ)ẇE(ξ) dξ + ṗ(x)

]
dx

− δl̇

[∫ l

0

ṗ(x)
∂w

∂l
dx+H · l̇ − η

]
− 2ηδαα = 0

(5.2.52)

It is therefore necessary to verify the validity of the equality

δTPEL = 0 ∀δẇE, ∀δl̇, ∀δα. (5.2.53)

The variation δTPEL, as expressed in (5.2.52), can be expressed as the sum of three different
contributions, called Ψ1,Ψ2, and Ψ3, respectively, where:

Ψ1 =−
∫ l

0

δẇE(x)

[∫ l

0

Gpp(x− ξ)ẇE(ξ) dξ + ṗ(x)

]
dx

Ψ2 =− δl̇

[∫ l

0

ṗ(x)
∂w

∂l
dx+H · l̇ − η

]

Ψ3 =− 2ηδαα = 0

(5.2.54)

Equilibrium equation can be recovered imposing that Ψ1 = 0 ∀δẇE, namely

∫ l

0

Gpp(x− ξ)ẇE(ξ) dξ + ṗ(x) = 0 (5.2.55)

To prove these results, Gebbia fundamental solutions in linear elasticity are recalled (Carini and
De Donato, 1992). These solution refer to the case of a concentrated displacement discontinuity
(whose components are Dl

j j = 1, 2, 3) in a given material point ξ (crossing a surface Γ with
normal l) of a 3D elastic homogeneous and isotropic unbounded continuum.
Let Gpp

iα be the effect (in a given material point x) in terms of tractions p(x) on the surface of
normal n.
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The following relation is valid:

Gpp
iα(x, ξ,n, l)D

l
α = pi(x) (5.2.56)

where index i is representative of components of effects in x and index α is representative of
components of causes in ξ.
The full expression of Gpp

iα is

Gpp
iα(x, ξ,n, l) =

ν · E
2(1− ν)(1 + ν)

· f pp
iα (x, ξ,n, l) +

E

2(1− ν)(1 + ν)
· gppiα(x, ξ,n, l) (5.2.57)

For the 2D case the following relations hold

f pp
iα (x, ξ,n, l) = 0 (5.2.58)

gppiα(x, ξ,n, l) =
1

2πr2
(
δiαδkj + δkiδαj − δαkδij + 2δαkr/ir/j + 2δijr/αr/k − 8r/ir/jr/αr/k

)
lknj

(5.2.59)

where r/i =
xi − ξi

r
, where r is the distance between x and ξ.

In the simplest case, meaning superimposing α, i = 1 and j, k = 2, one has:

gpp11(x, ξ,n, l) =
1

2πr2
(5.2.60)

Therefore, equation (5.2.57) reduces to

Gpp
11(x, ξ,n, l) =

E

2(1− ν)(1 + ν)
· 1

2π(x− ξ)2
(5.2.61)

Exploiting expression (5.2.11) for fracture opening, from (5.2.55), one can express the increment
ẇE in terms of pressure increment ṗ, namely

ẇE(ξ) =
∂w

∂p
· ṗ = 4 · l

E

[
1−

(x
l

)2
]1/2

· ṗ (5.2.62)

In the range [−l, l], equation (5.2.55) leads to

∫ l

−l

Gpp(x− ξ)ẇE(ξ) dξ + ṗ

E

4π(1− ν2)
· 4
E

· ṗ ·
∫ l

−l

1

(x− ξ)2

√
l2 − ξ2 dξ + ṗ

1

π(1− ν2)
· ṗ ·

∫ l

−l

1

(x− ξ)2

√
l2 − ξ2 dξ + ṗ

1

π(1− ν2)
· ṗ · [−π] + ṗ

− ṗ

(1− ν2)
+ ṗ = 0

(5.2.63)
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If the Poisson coefficient vanishes, the equality Ψ1 = 0, ∀δẇE is proved.
Imposing that Ψ2 = 0, ∀δl̇ and Ψ3 = 0, ∀δα̇, one has

∫ l

0

ṗ(x)
∂w

∂l
dx+H · l̇ − η = 0 (5.2.64)

2ηα = 0 (5.2.65)

From equation (5.2.64), and recalling the definition of the variation of energy-release rate
(5.2.24), the equality between Ġ and the Lagrange multiplier derives, namely

Ġ =

∫ l

0

ṗ(x)
∂w

∂l
dx+H · l̇ = η (5.2.66)

Substituing equation (5.2.66) in (5.2.65), one gets

Ġ · α = 0 (5.2.67)

In view of the equality α2 = l̇, verified at the beginning of the present Section, one finally derives
the stationarity of the functional (5.2.51), since Ġ · l̇ = 0 because of consistency condition.

5.2.6 One-field functional

The two-fields functional (5.2.38) can be transformed into a one-field one. To this aim, one
recalls that the fracture opening can be decomposed into two independent contributions. One is
the elastic fracture opening ẇE, and the other one is the plastic crack aperture ẇP . Accordingly,
the fracture opening variation can be expressed as the sum of an increment due to the variation
of the external loads ṗ, and an irreversible increment due to the variation of crack length l̇,
namely

ẇ =
∂w

∂p
· ṗ+ ∂w

∂l
· l̇ = ẇE + ẇP (5.2.68)
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Assuming for simplicity that ẇE is constant, taking into account equilibrium equation (5.2.55),
functional (5.2.38) reads

TPE(ẇP , l̇) =− 1

2

∫ l

0

∫ l

0

Gpp(x− ξ)ẇE(x)ẇE(ξ) dξdx−
∫ l

0

ṗ(x)ẇ(x) dx− 1

2
H · l̇2

=− 1

2

∫ l

0

∫ l

0

Gpp(x− ξ)ẇE(x)ẇE(ξ) dξdx−
∫ l

0

ṗ(x)ẇE(x) dx

−
∫ l

0

ṗ(x)ẇP (x) dx− 1

2
H · l̇2

=− 1

2

∫ l

0

∫ l

0

Gpp(x− ξ)ẇE(x)ẇE(ξ) dξdx+

∫ l

0

∫ l

0

Gpp(x− ξ)ẇE(x)ẇE(ξ) dξdx

−
∫ l

0

ṗ(x)ẇP (x) dx− 1

2
H · l̇2

=+
1

2

∫ l

0

∫ l

0

Gpp(x− ξ)ẇE(x)ẇE(ξ) dξdx−
∫ l

0

ṗ(x)ẇP (x) dx− 1

2
H · l̇2

=− 1

2

∫ l

0

ṗ(x)ẇE(x) dx−
∫ l

0

ṗ(x)ẇP (x) dx− 1

2
H · l̇2

(5.2.69)

It is worth mentioning the validity of the following constraint

l̇ ≥ 0 ⇒ ẇP (l) ≥ 0 if G = G0 (5.2.70)

where ẇP (l) means that ẇP depends on the crack length.

Furthermore, since the term −1
2

∫ l

0
ṗ(x)ẇE(x) dx, as stated, is a known term, it can be omitted

from the functional (5.2.69). In order to write the functional as a function of ẇP , the following
hypothesis is introduced

l̇ = βẇP (l), (5.2.71)

where β is a proportionality coefficient between l̇ and ẇP (l), namely to express l̇ as a function
of the increase of the crack opening due to plastic distortion.
Recalling expression (5.2.26) for the hardening parameter H, the last term of the functional
(5.2.69) gains the form

Hl̇2 =

(
1

2

∫ l

0

p · ∂
2w

∂l2
dx

)
· l̇2

=

(
1

2

∫ l

0

p · ∂
2w

∂l2
dx

)
· β2(ẇP (l))2

=

(
β2

2

∫ l

0

p · ∂
2w

∂l2
dx

)
· (ẇP (l))2 = H̃ · (ẇP (l))2

(5.2.72)
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The functional (5.2.69) is then written as a function of ẇP :

TPE(ẇP ) = −1

2
H̃ · (ẇP (l))2 −

∫ l

0

ṗ(x)ẇP (x) dx, (5.2.73)

which turns out to be a functional constituted by a quadratic part and a linear one.

In order to express functional (5.2.69) as dependent solely on l̇, bearing in mind that
ẇP = ∂w

∂l
· l̇ and that ẇE is constant, equation (5.2.69) can be written in the following form

TPE =− 1

2

∫ l

0

∫ l

0

Gpp(x− ξ)ẇE(x)ẇE(ξ) dξdx−
∫ l

0

ṗ(x)ẇ(x) dx− 1

2
H · l̇2

=− 1

2

∫ l

0

ṗ(x)ẇE(x) dx−
∫ l

0

ṗ(x)ẇP (x) dx− 1

2
H · l̇2

=− 1

2

∫ l

0

ṗ(x)ẇE(x) dx−
∫ l

0

ṗ(x)
∂w

∂l
· l̇ dx− 1

2
H · l̇2

=− 1

2

∫ l

0

ṗ(x)ẇE(x) dx−
∫ l

0

ṗ(x)
∂w

∂l
dx · l̇ − 1

2
H · l̇2

(5.2.74)

Since l̇ ≥ 0 if G = G0, one finally has

TPE(l̇) = −1

2
H · l̇2 −

∫ l

0

ṗ(x)
∂w

∂l
dx · l̇ (5.2.75)

Analogy with the functional obtained by Salvadori and Carini (2011)

In this Subsection, the goal is to define an analogy between the one-field functional (5.2.75)
and the functional obtained by Salvadori and Carini (2011). In the above-mentioned reference,
in fact, it has been proved that the crack front velocity as solution of the global quasi-static
fracture propagation problem, minimizes a constrained quadratic functional. In particular, the
following theorem has been stated:

Provided that ∂ϕ
∂K∗

·K(1) < 0 the crack tip velocity ṡ(t) that solves the global quasi-static
fracture propagation problem at time t minimizes the function:

χ(ṡ) =− 1

2

∂ϕ

∂K∗
(t) ·K(1)(t)ṡ2 − ∂ϕ

∂K∗
(t) · K̇∗(t)ṡ (5.2.76)

under the constraint :
ṡ ≥ 0 (5.2.77)

A stability requirement has been derived in Salvadori and Carini (2011), expressing the condi-
tion under which the crack propagation is governed by the increment of the external loads. It
holds

∂ϕ

∂K∗
·K(1) < 0. (5.2.78)
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Condition (5.2.78) corresponds toH < 0. Exactly as in (5.2.75), also functional (5.2.76) is a one-
field functional and it comprises a quadratic component and a linear one. It is a reminiscence
of Ceradini’s theorem for standard dissipative systems theory. Crack propagation is considered
as an irreversible phenomenon, hence the constraint (5.2.77). Functional (5.2.76) departs from
the Stress Intensity Factors (SIFs) vector expansion in powers of crack elongation s, performed
in Amestoy M. et al. (1986) and Amestoy M. and Leblond J.B. (1992). In particular, denoting
with K(t) the SIFs vector at any crack tip at time t, at time instant τ ≥ t the expansion takes
the general form

K(κ(τ), s(τ)) = K∗(κ(τ)) +K(1/2)(κ(τ))
√

s(τ) +K(1)(κ(τ))s(τ) +O(s3/2). (5.2.79)

It details the behavior of SIFs at a generic crack tip due to an irreversible change in the geometry
at the same crack tip. Factors K∗ and K(1/2) in (5.2.79) are termed universal, because they
obey to the autonomy concept. They are in fact independent on body geometry and here they
are expressed as functions of the load factor κ(τ), which determines the proportional increase
of the external loading and has no requirements apart from being non negative. Term K(1),
instead, depends on the geometry of the body and on the curvature of the elongated branch.
The mathematical representation of the onset of crack propagation is given by the equation

ϕ(K) = ϑ(K)− ϑ(KC
1 ) = 0, (5.2.80)

where function ϕ is expressed as the difference between the actual crack state ϑ(K) and a
critical one, depending on the value of the fracture toughness KC

1 . Function ϑ is peculiar of
any crack propagation criterion (see Salvadori 2008). Cracks cannot advance if ϕ < 0 and this
inequality allows to define the so-called safe equilibrium domain

E = {{K∗

1 , K
∗

2} ∈ R+
0 ×R|ϕ(K∗

1 , K
∗

2) < 0}, (5.2.81)

which is a reminiscence of the elastic domain in plasticity.
Its boundary defines the onset of crack propagation, namely

∂E = {{K∗

1 , K
∗

2} ∈ R+
0 ×R|ϕ(K∗

1 , K
∗

2) = 0}, (5.2.82)

which is a reminiscence of the yield surface in plasticity.
Propagation is governed by the following conditions, reminiscence of Kuhn-Tucker conditions
of plasticity

ϕṡ = 0 ϕ ≤ 0 ṡ ≥ 0, (5.2.83)

analogous to (5.2.33). If the Maximum Energy Release Rate (MERR) is chosen as the propa-
gation criterion, function ϕ assumes the following form

ϕ =
1

2

1− ν2

E

(
||K∗||2 − (KC

1 )
2
)
. (5.2.84)

If ϕ < 0 at time t, there is a load increment δκ small enough not to lengthen the crack:

at t s.t. ϕ(K) < 0 ∃δκ > 0 s.t.

δK =
K(t)

κ(t)
δκ, ϕ(K + δK) < 0

(5.2.85)

This describes the first stage of the cracking process, namely loading without crack growth.
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When the onset of the propagation is reached because of the increment of the external loads,
the second phase starts: stable crack growth.

at t s.t. ϕ(K) = 0 ∃δκ > 0 s.t.

δK∗ =
K∗(t)

κ(t)
δκ, δK = δK∗ +K(1/2)(t)

√
s+O(δκ, s)

(5.2.86)

The latter condition is a reminiscence of Colonnetti’s decomposition of stresses in plasticity.
The variation of the SIFs δK, in fact, is decomposed as due to an elastic contribution δK∗ and
to a distortion, represented by the crack elongation s, which reverses itself into the stiffness
factor K(1/2).
The consistency condition is derived from (5.2.83) by performing a time derivative at ϕ = 0,
namely

ϕ̇ṡ = 0, ϕ̇ ≤ 0, ṡ ≥ 0, (5.2.87)

which recall the conditions (5.2.36).
Owing to equation (5.2.86) and to consistency condition (5.2.87), for ṡ(t) > 0, the time deriva-
tive of function ϕ can be properly defined. One has

ϕ̇(t) =
∂ϕ

∂K∗
(t) ·

(
K̇∗(t) +K(1)(t)ṡ(t)

)
+ h.o.t = 0 (5.2.88)

Recalling Colonnetti’s work, K̇∗(t) is a contribution which is associated with an inelastic dis-
tortion ṡ(t), but, in the hypotheses made by Salvadori and Carini (2011), it is a purely elastic
contribution due to κ̇(t). Equation (5.2.88) sets the condition for a stable crack growth, re-
quired for the validity of theorem (5.2.76), and inherently, for the transition to the unstable
phase. It reads

κ̇(t) > 0 → ∂ϕ

∂K∗
(t) ·K(1)(t) < 0. (5.2.89)

The analogies existing between the two one-field functionals (5.2.76) and (5.2.38) are summa-
rized in Table 5.1.
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TPE(l̇) χ(ṡ)

Inelastic variable l̇ ṡ

Constraint l̇ ≥ 0 ṡ ≥ 0

Quadratic component −1
2
H · l̇2 −1

2
∂ϕ
∂K∗

(t) ·K(1)(t)ṡ2

Stability condition H < 0 ∂ϕ
∂K∗

(t) ·K(1)(t) < 0

Geometry dependent term H K(1)

Linear component −
∫ l

0
ṗ(x)∂w

∂l
dx · l̇ − ∂ϕ

∂K∗
(t) · K̇∗(t)ṡ

Elastic contributions ṗ K̇∗(t)

Kuhn-Tucker conditions (G−G0)l̇ = 0 ; G−G0 ≤ 0 ; l̇ ≥ 0 ϕṡ = 0 ; ϕ ≤ 0 ; ṡ ≥ 0

Consistency conditions Ġl̇ = 0 ; Ġ ≤ 0 ; l̇ ≥ 0 ϕ̇ṡ = 0 ; ϕ̇ ≤ 0 ; ṡ ≥ 0
with G = G0 with ϕ = 0

Table 5.1: Summary of the analogies between the one-field functional (5.2.38) dependent on l̇,
obtained in the present work, and the one-field functional (5.2.76) dependent on ṡ obtained by
Salvadori and Carini (2011).
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5.2.7 Generalization of the problem

The goal of this Section is to extend the obtained functional (5.2.38) to the case of a body Ω
defined in a two or three-dimensional space. One considers the problem of Fig. 5.2:

Figure 5.2: Body Ω with a crack of boundary Γw, subjected to Dirichlet and Neumann boundary
conditions.

The mathematical formulation of the fracture mechanics problem is based on the following set
of hypotheses:

• a domain Ω ⊂ R
d, where d = 2, 3 is the spatial dimension of the problem;

• small displacements and strains are assumed, in the sense that the equilibrium relations
are not affected by configuration changes and the kinematic compatibility equations are
linear;

• displacements ū are imposed over Γu (Dirichlet boundary conditions) and tractions p̄ are
imposed over Γp (Neumann boundary conditions).

The geometric description of the crack implies two boundaries: Γ+
w and Γ−

w , which shape
its edges, with respect to a reference surface Γw.
The relative opening displacement function is defined here with w.

The direct boundary integral formulation is based on the use of Green’s functions (re-
united in the matrices Guu and Gpu) which represent, respectively, the components of the
displacement vector ui (i=1,2,3) at the point x and the components of the traction vector pi
(i=1,2,3) on a surface of normal n(x), due to a unit force concentrated in a point ξ ∈ Ω and
acting on the unlimited space Ω∞.
To define the dual form, the Green functions this time are Gup and Gpp, which represent
respectively, the components of the displacement vector ui (i=1,2,3) at the point x and the
components of the traction vector pi (i=1,2,3) on surface of normal n(x), due to a unitary
relative displacement concentrated in a point ξ ∈ Ω and acting on the unlimited space Ω∞.
The first subscript of G, therefore, specifies the nature of the effect, while the second is asso-
ciated with the dual of the source which causes this effect.
x and ξ denote the so-called field-point and source-point.
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The classical bilinear form:

A(u,p) =

∫

Γ

u · p dx (5.2.90)

puts the two spaces U and P in duality, with u ∈ U and p ∈ P .
It is possible to prove the following symmetry properties of Green’s functions:

A(q,Guup) = A(p,Guuq) (5.2.91)

A(u,Gppv) = A(v,Gppu) (5.2.92)

A(u,Gpup) = A(p,Gupu) (5.2.93)

In the integration process, if the point x tends to the boundary (considering that r = x− ξ),
Green functions bring out singularities.
These behaviours have already been extensively discussed in the past and summarized in Table
5.2:

Kernel Asymptotic behaviour Name
when r → 0

2D 3D
Guu O(log(r)) O(r−1) Weak singularity (integrable)

Gup,Gpu O(r−1) O(r−2) Strong singularity
Gpp O(r−2) O(r−3) Hypersingularity

Table 5.2: Summary of the singularities of Green’s functions when r = x− ξ −→ 0.

Integrals with strong singularities must be interpreted according to their distributional nature
of the Cauchy Principal Value.
Similarly, the hypersingular kernel must be interpreted according to its distributional nature
of the finite part of Hadamard.

Schematization of the problem

The Galerkin scheme of the BIE (Boundary Integral Equations) formulation, applied to the
fracture mechanics problem in incremental form, leads to the following operator form:

∫
Γu

Guu[·] dξ −
∫
Γp

Gup[·] dξ −
∫
Γw

Gup[·] dξ
−
∫
Γu

Gpu[·] dξ
∫
Γp

Gpp[·] dξ
∫
Γw

Gpp[·] dξ
−
∫
Γu

Gpu[·] dξ
∫
Γp

Gpp[·] dξ
∫
Γw

Gpp[·] dξ
·

ṗE

u̇E

ẇE

=

ḟu

ḟp

ḟw

on Γu

on Γp

on Γw

(5.2.94)

Under the hypothesis of smooth boundaries, the vectors of the known terms hold:

ḟu(x) =
1

2
˙̄u−

∫

Γp

Guu
˙̄p dξ +

∫

Γu

Gup
˙̄u dξ (5.2.95)

ḟp(x) = −1

2
˙̄p+

∫

Γp

Gpu
˙̄p dξ −

∫

Γu

Gpp
˙̄u dξ (5.2.96)
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ḟw(x) =
1

2
˙̄p+

∫

Γp

Gpu
˙̄p dξ −

∫

Γu

Gpp
˙̄u dξ (5.2.97)

Equation (5.2.94) can be written in the compact form:

LẏE = ḟ (5.2.98)

The operator L is symmetric with respect to the bilinear form (5.2.90):

A(Lu,v) = A(u,Lv) (5.2.99)

It is therefore possible to write in full the functional Total Potential Energy, thus extending
the functional (5.2.38):

TPEext(u̇, ṗ, ẇ, l̇) =
1

2

∫

Γ

ẏELẏE −
∫

Γ

ḟ ẏ − 1

2
H l̇2

=
1

2

∫

Γu

ṗE(x)

∫

Γu

GuuṗE(ξ) dξ dx− 1

2

∫

Γu

ṗE(x)

∫

Γp

Gupu̇E(ξ) dξ dx

− 1

2

∫

Γu

ṗE(x)

∫

Γw

GupẇE(ξ) dξ dx− 1

2

∫

Γp

u̇E(x)

∫

Γu

GpuṗE(ξ) dξ dx

+
1

2

∫

Γp

u̇E(x)

∫

Γp

Gppu̇E(ξ) dξ dx+
1

2

∫

Γp

u̇E(x)

∫

Γw

GppẇE(ξ) dξ dx

− 1

2

∫

Γw

ẇE(x)

∫

Γu

GpuṗE(ξ) dξ dx+
1

2

∫

Γw

ẇE(x)

∫

Γp

Gppu̇E(ξ) dξ dx

+
1

2

∫

Γw

ẇE(x)

∫

Γw

GppẇE(ξ) dξ dx

−
∫

Γu

ṗ(x) · ḟu(x) dx−
∫

Γp

u̇(x) · ḟp(x) dx−
∫

Γw

ẇ(x) · ˙fw(x) dx

− 1

2
H l̇2

(5.2.100)

Vector ẏ can be additively decomposed in a contribution due to load increment and a contri-
bution due to plastic distortion l̇

ẏE = ẏ − ẏP , ẏP = N · l̇, (5.2.101)

with

N =

[
∂y

∂l

]
(5.2.102)

Furthermore, the following definition of the hardening operator H holds:

H =
1

2

∫

Γ

f(x) ·
[
∂2y

∂l2

]
dx (5.2.103)
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The goal, once again, is to prove that a field ˙̂y is the solution of the fracture mechanics problem
if and only if it minimizes the functional (5.2.100) under the constraint

l̇ ≥ 0 (5.2.104)

Sufficient condition
In order to prove it, it is necessary to consider the Lagrangian functional:

TPEextL(u̇, ṗ, ẇ, η, l̇, α) = TPEext(u̇, ṗ, ẇ) + η(l̇ − α2) =
1

2

∫

Γ

ẏELẏE −
∫

Γ

ḟ ẏ − 1

2
H l̇2 + η(l̇ − α2)

(5.2.105)

where η is a Lagrange multiplier.
The stationarity of TPEextL with respect to η reproduces exactly the constraint (5.2.104), since
δη(l̇ − α2) = 0 ⇒ l̇ = α2 ≥ 0.
The stationarity is therefore calculated with respect to the other variables u̇, ṗ, ẇ, l̇, α.
It gives

δTPEextL(u̇, ṗ, ẇ, l̇, α) =
1

2

∫

Γ

δẏELẏE +
1

2

∫

Γ

ẏELδẏE −
∫

Γ

ḟδẏ − 1

2
Hδl̇l̇ − 1

2
H l̇δl̇ + η(δl̇ − 2δαα)

=

∫

Γ

δẏELẏE −
∫

Γ

ḟδẏ − δl̇H l̇ + η(δl̇ − 2δαα) = 0

(5.2.106)

After algebraic manipulations, one has:

δTPEextL(u̇, ṗ, ẇ, l̇, α) =

∫

Γ

δẏELẏE −
∫

Γ

ḟ(δẏE + δẏP )− δl̇H l̇ + η(δl̇ − 2δαα)

=

∫

Γ

δẏE

[
LẏE − ḟ

]
−
∫

Γ

ḟδẏP − δl̇H l̇ + η(δl̇ − 2δαα)

=

∫

Γ

δẏE

[
LẏE − ḟ

]
−
∫

Γ

ḟδ

[
∂y

∂l
l̇

]
− δl̇H l̇ + η(δl̇ − 2δαα)

=

∫

Γ

δẏE

[
LẏE − ḟ

]
−
∫

Γ

ḟ
∂y

∂l
δl̇ − δl̇H l̇ + η(δl̇ − 2δαα)

=

∫

Γ

δẏE

[
LẏE − ḟ

]
− δl̇

[∫

Γ

ḟ
∂y

∂l
+H l̇ − η

]
− 2ηδαα = 0

(5.2.107)

Thus, the problem reduces to the following system of equations:

∫

Γ

LẏE − ḟ = 0 (5.2.108)

∫

Γ

ḟ
∂y

∂l
+H l̇ − η = 0 (5.2.109)

2ηα = 0 (5.2.110)

The first equation is the equilibrium equation.
From the second equation and recalling the definition of the variation of energy-release rate
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(5.2.24), the equality between Ġ and the Lagrange multiplier derives, namely

Ġ =

∫

Γ

ḟ
∂y

∂l
+H l̇ = η (5.2.111)

Substituing equation (5.2.111) in (5.2.110), one gets

Ġ · α = 0 (5.2.112)

In view of the equality α2 = l̇, verified at the beginning of the present Section, one finally de-
rives the stationarity of the functional (5.2.100), since Ġ· l̇ = 0 because of consistency condition.

Necessary condition
For what regards the the necessary condition, one needs to compute the difference between the
functional (5.2.100) in an admissible solution and in the exact solution, proving that the result
is always greater than zero.

Denoting with TPEext( ˙̂u, ˙̂p, ˙̂w,
˙̂
l) the functional (5.2.100) computed in the admissible solution

and with TPEext(u̇, ṗ, ẇ, l̇) the same functional at the exact solution, one needs to prove that

∆TPEext = TPEext( ˙̂u, ˙̂p, ˙̂w,
˙̂
l)− TPEext(u̇, ṗ, ẇ, l̇) ≥ 0 (5.2.113)

After defining the following quantities

∆u̇ = ˙̂u− u̇, ∆ṗ = ˙̂p− ṗ, ∆ẇ = ˙̂w − ẇ, ∆l̇ =
˙̂
l − l̇, (5.2.114)

the variation of TPEext reads

∆TPEext =
1

2

∫

Γ

∆ẏEL∆ẏE −
∫

Γ

ḟ∆ẏ +

∫

Γ

ẏEL∆ẏE − 1

2
H∆l̇2 −H∆l̇ · l̇

=
1

2

∫

Γ

∆ẏEL∆ẏE − 1

2
H∆l̇2

−
∫

Γ

ḟ(∆ẏE +∆ẏP ) +

∫

Γ

ẏEL∆ẏE −H∆l̇ · l̇

=
1

2

∫

Γ

∆ẏEL∆ẏE − 1

2
H∆l̇2

+

∫

Γ

∆ẏE

[
LẏE − ḟ

]
−
∫

Γ

ḟ∆ẏP −H∆l̇ · l̇

=
1

2

∫

Γ

∆ẏEL∆ẏE − 1

2
H∆l̇2

+

∫

Γ

∆ẏE

[
LẏE − ḟ

]
−∆l̇

[∫

Γ

ḟ
∂y

∂l
+H l̇

]

(5.2.115)
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The third member of (5.2.115) vanishes as it is the equilibrium equation of the problem.
Recalling the definition of the variation of energy-release rate (5.2.24), one finally has:

∆TPEext =
1

2

∫

Γ

∆ẏEL∆ẏE − 1

2
H∆l̇2 − ˙̂

lĠ+ l̇Ġ (5.2.116)

The term − ˙̂
lĠ in (5.2.116) is positive semidefinite, while the term l̇Ġ is null, due to the con-

sistency condition (5.2.87).
Hardening operator H is defined as negative, therefore a hypothesis on the sign of the operator
L is needed.

Defined as in (5.2.94), the operator L has no sign, but there are two possibilities to fix this
issue:

• evaluate a self-balanced solid, therefore without having to superimpose displacements. In
this case all components defined on Γu vanish;

• carry out an inversion of the type proposed by Bramble and Pasciak, in order to guarantee
the positive definition of L.

Bramble and Pasciak method for the positive definition of the operator L

Bramble and Pasciak method (Carini, Diligenti, Salvadori 1997) is exploited here to derive the
positive definition of the operator L. First, one considers the following transformations:

A =

∫

Γu

Guu[·] dξ (5.2.117)

B̃ =
−
∫
Γu

Gpu[·] dξ
−
∫
Γu

Gpu[·] dξ (5.2.118)

B̃∗ = −
∫
Γp

Gup[·] dξ −
∫
Γw

Gup[·] dξ (5.2.119)

C̃ =
−
∫
Γp

Gpp[·] dξ −
∫
Γw

Gpp[·] dξ
−
∫
Γp

Gpp[·] dξ −
∫
Γw

Gpp[·] dξ (5.2.120)

U̇E =
u̇E

ẇE (5.2.121)

ḟΣ =
ḟp

ḟw
(5.2.122)

In the light of (5.2.117)-(5.2.122),the problem (5.2.94) can be rewritten in operatorial form as:

A B̃∗

B̃ −C̃
· ṗE

U̇E =
ḟu

ḟΣ
(5.2.123)

In order to derive the positive definition of the operator L, one multiplies both members of
(5.2.123) by the operator P̃ , defined as

P̃ =
AA−1

0 − I 0

B̃A−1
0 −I

, (5.2.124)
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where A−1
0 is an operator that makes A symmetric and positive definite.

The system (5.2.123) thus becomes

(A−A0)A
−1
0 A (A−A0)A

−1
0 B̃∗

B̃A−1
0 (A−A0) C̃ + B̃A−1

0 B̃∗
· ṗE

U̇E =
(A−A0)A

−1
0 ḟu

B̃A−1
0 ḟu − ḟΣ

(5.2.125)

The system (5.2.125) can be extended as

D E∗ F ∗

E Q R∗

F R S

·
ṗE

u̇E

ẇE

=
ġu

ġp

ġw

su Γu

su Γp

su Γw

, (5.2.126)

for which the following relations hold:

D = (A−A0)A
−1
0 A (5.2.127)

E = −
∫

Γu

GpuA
−1
0 (A−A0)[·] dξ (5.2.128)

E∗ = −
∫

Γp

(A−A0)A
−1
0 Gup[·] dξ (5.2.129)

F = −
∫

Γu

GpuA
−1
0 (A−A0)[·] dξ (5.2.130)

F ∗ = −
∫

Γw

(A−A0)A
−1
0 Gup[·] dξ (5.2.131)

Q = −
∫

Γp

Gpp[·] dξ +

∫

Γu

Gpu

[
A−1

0

∫

Γp

Gup[·] dξ
]
dξ (5.2.132)

R = −
∫

Γp

Gpp[·] dξ +

∫

Γu

Gpu

[
A−1

0

∫

Γp

Gup[·] dξ
]
dξ (5.2.133)

R∗ = −
∫

Γw

Gpp[·] dξ +

∫

Γu

Gpu

[
A−1

0

∫

Γw

Gup[·] dξ
]
dξ (5.2.134)

S = −
∫

Γw

Gpp[·] dξ +

∫

Γu

Gpu

[
A−1

0

∫

Γw

Gup[·] dξ
]
dξ (5.2.135)

ġu = (A−A0)A
−1
0 ḟu (5.2.136)

ġp = −
∫

Γu

GpuA
−1
0 ḟu dξ − ḟp (5.2.137)

ġw = −
∫

Γu

GpuA
−1
0 ḟu dξ − ḟw (5.2.138)
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It is therefore possible to rewrite the Total Potential Energy functional (5.2.100) in the following
way:

TPEext(u̇, ṗ, ẇ, l̇) =
1

2

∫

Γ

ẏELẏE −
∫

Γ

ḟ ẏ − 1

2
H l̇2

=
1

2

∫

Γu

ṗEDṗE dx+
1

2

∫

Γp

u̇EQu̇E dx+
1

2

∫

Γw

ẇESẇE dx

+

∫

Γp

u̇EEṗE dξ +

∫

Γw

ẇEF ṗE dξ +

∫

Γw

ẇERu̇E dξ

− 1

2
H l̇2

−
∫

Γu

ṗ · ġu dx−
∫

Γp

u̇ · ġp dx−
∫

Γw

ẇ · ġw dx

(5.2.139)

As in Carini, Diligenti and Salvadori (1997) (where the proof is omitted for the sake of brevity),
it is now possible to conclude that the solution of the problem is the one which solves the
minimization problem: {

min
[
TPEext(u̇, ṗ, ẇ, l̇)

]

l̇ ≥ 0
(5.2.140)
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5.3 Viscoelastic fracture mechanics

An interesting line of future research, which unfortunately has not been developed in the work
of this thesis due to time restrictions, is the topic of viscoelastic fracture mechanics.
Starting from Francfort-Marigot formulation (2008), namely a variational model for quasistatic
crack evolution in a brittle material given by a contribution of a surface energy and a contribu-
tion of bulk energy, which is a revisitation of Griffith’s energetic criterion, a functional of the
Free Energy type is written in a non-incremental form.
For an admissible solution, it could be written as

FV =− 1

2

∫ l̂

0

∫ l̂

0

∫ T

0−

∫ T

0−
Rpp(x− ξ; 2T − t− τ)dŵ(ξ; τ)dŵ(x; t) dξdx

−
∫ l̂

0

∫ T

0−
p(x; 2T − t)dŵ(x; t) dx+G0 · l̂(T )

(5.3.1)

with the constraint l̂ ≥ l(t).
Green’s functions are replaced by functions (here denoted with Rpp), recalling relaxation ker-
nels of viscoelastic composites, whose properties of positive definiteness should be defined in
advance.

In order to prove that the solution of the problem is the minimum of functional (5.3.1), one
needs to prove that the difference between the functional computed in the correspondence of an
admissible solution, here denoted with F̂V , and the functional computed in the correspondence
of the exact solution, is non negative, namely

∆FV = F̂V − FV ≥ 0 (5.3.2)

The stationarity of functional (5.3.1) needs to be proved starting from the Lagrangian functional

FVL
= −1

2

∫ l̂

0

∫ l̂

0

∫ T

0−

∫ T

0−
Rpp(x− ξ; 2T − t− τ)dŵ(ξ; τ)dŵ(x; t) dξdx

−
∫ l̂

0

∫ T

0−
p(x; 2T − t)dŵ(x; t) dx+G0 · l̂(T ) + η[l̂ − (l(T ) + α2)] (5.3.3)

where η is a Lagrange multiplier and α2 is a necessary definite-positive parameter in order to
include the constraint of the problem. To this aim, the Gateaux derivative of functional (5.3.1)
needs to be zero, namely

d

dǫ
FVL

(l + ǫl̃, w + ǫw̃)|ǫ=0 = 0 (5.3.4)

Once again, the stationarity of FVL
with respect to η returns the constraint l ≥ l(T ) ( δη[l̂ −

(l(t) + α2)] = 0 ⇒ l̂ = l(T ) + α2 ≥ l(T )).
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5.4 Conclusions

Starting from Capurso-Maier incremental functional for the elastic-plastic case as expressed in
equation (5.2.1), an analogous formulation has been obtained for the fracture mechanics case
in Section 5.2.5. It materializes in equation (5.2.38).
The negative hardening component is obtained from the incremental form of the energy-release
rate in Section 5.2.3 and it results to be dependent on the geometry of the crack, thus is not
known a priori. The complementary conditions are re-obtained for fracture mechanics. They
govern the fracture propagation problem at each time instant, as expressed by equations (5.2.33)
and(5.2.36). The stationarity of the functional (5.2.38) is demonstrated in Section 5.2.5 and a
minimum principle is derived. The functional (5.2.38) is re-formulated as a one-field functional
in Section 5.2.6 and an analogy with the functional introduced by Salvadori and Carini (2011)
(see equation (5.2.76)) is presented.
Furthermore, the problem is generalized to a solid body in a two/three-dimensional space in
Section 5.2.7.

Starting from Francfort-Marigo work (2008) a non incremental formulation, in a Free Energy
form, could be used to extend the fracture mechanics formulation to viscoelastic composites.
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Chapter 6

On the dynamic stability of elastic
structures subjected to follower forces
and some curiosities about systems
showing instability in tension

Notation

Greek and latin letters

• M : Concentrated mass;

• m: Distributed mass;

• µ: Mass per unit length;

• ω: Frequency of the small vibrations of the rod;

• u: Lagrangian coordinate;

• K: Stiffness coefficient;

• E: Total energy of a conservative system;

• P : Concentrated follower load;

• p: Distributed follower load;

• Q: Concentrated conservative load;

• l: Length of the rod;

• J : Moment of inertia;

• F : Transverse static force;

• E: Young’s modulus;

• a: Coordinate of the intermediate support;
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• a∗: Transition value;

• v(z): Deflected curve;

• Φ: Rotation.

Symbols

• :̂ Admissible solution.

Operators and functions

•
n: nth spatial derivative operation;

• :̇ Derivation with respect to the time variable;

• f : Leipholz’s functional;

• :̇ Derivation with respect to the time variable;

• U : Deformation energy.
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6.1 A variational approach for the dynamic stability prob-

lem

Leipholz (1978) spent many years trying to reconcile the fact that structural problems with
follower forces are nonconservative, thus the classical variational principles following Hamilton’s
principle cannot be applied, with the fact that, in some way, a variational approach should yet
be possible.
He defined a bilinear functional, applicable to nonconservative systems, like Beck’s rod, and
proved that there exist a stationary principle.

Starting from Beck’s rod (Fig. 6.1) of length l, with bending stiffness EJ , mass per unit
length µ, clamped at a lower end and subjected to a compressive follower load P at the free
end, one can write the following differential equation with relevant boundary conditions:

EJvIV + PvII − µω2v = 0

v(0) = vI(0) = vII(l) = vIII(l) = 0
(6.1.1)

In (6.1.1) ω is the frequency of the small vibrations of the rod, v(z) is the lateral displacement
and z is the coordinate of the axis of the rod.
Consider the following functional:

f(v̂) =

∫ l

0

[
EJv̂IV (z) + P v̂II(z)− µω2v̂(z)

]
· v̂II(l − z) dz (6.1.2)

The latter functional proves to be particularly interesting for our research because it contains
a convolution product with respect to the space variable instead of the time variable.
The stationary principle holds:

f(v) = stat
v̂

f(v̂) (6.1.3)

and the critical loads are obtained.

Figure 6.1: Beck’s rod: clamped at one end with a concentrated follower force on the free end
and with a distributed mass m.
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The advantage of using a convolutive functional is clear after what has been described in Chap-
ter 2 and in Chapter 3.
A splitting of the lenght of the beam would formally double the unknowns: the variables defined
in the first sub-interval and those defined in the second one. This approach could lead to the
definition f a min-max principle, as already pointed out in Chapter 2 and Chapter 3.

In conclusion, Leipholz (1978) defined a functional valid for analysis with distributed mass
m. Our goal is to obtain results for different systems, in particular, structures with one con-
centrated mass.
It is important to emphasize that there are still many intermediate problems, which have not
been addressed in the context of this thesis, such as structures with two or more concentrated
masses or systems with both distributed and concentrated masses. This could be an interesting
topic for future researches.

6.2 Part I: Conjecture on the dynamic instability of struc-

tures subjected to compressive follower forces

6.2.1 Introduction

Within the framework of the second-order theory, some classical stability problems, whose criti-
cal load corresponded to dynamic instability, were considered in the paper by Feriani and Carini
(2017). The main focus was on plain systems with just one lumped mass. This idealization,
together with the assumption of negligible axial strain and the adoption of the second-order
theory, reduced the considered systems to a single Lagrangian coordinate. In this way, static
methods could be applied to derive the analytical expression of the stiffness coefficient and to
study the dynamic stability, starting with a well-known example, namely, a cantilever beam
with a lumped mass at the free end subjected to a follower load (Panovko, Gubanova, 1967). In
this Chapter, a new lumped mass system is studied: a straight-axis beam with constant cross-
sectional area and stiffness, mass-free, hinged at one end, simply supported at an intermediate
point (with a sliding plane parallel to the beam axis) and with the other end free, where a
lumped mass is present and a follower force is applied. As in the examples shown in Feriani
and Carini (2017), in this example the first asymptote of the stiffness coefficient corresponds
to the critical load, due to divergence at infinity. It is shown that this critical load is equal to
the buckling load due to divergence of an auxiliary structure, which differs from the original
one in that the concentrated mass is replaced by a constraint that blocks the corresponding
Lagrangian coordinate.

6.2.2 The stability problem with follower forces

A classical stability problem involving a straight-axis Euler Bernoulli beam without damping,
with a concentrated mass M , inflecting in a plane, subjected to follower loads is discussed. No
allowance is made for axial strain, and displacements are assumed to be small. This idealization
reduces the system to a single Lagrangian coordinate u. Therefore, the equation of motion due
to an initial perturbation can be written in the form:

Mü+Ku = 0 (6.2.1)
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where the stiffness coefficient K takes second-order effects into account. It follows that stability
depends on the sign of the stiffness coefficient. If it is positive, the motion is oscillatory and
bounded. If it is negative, the motion is unbounded and non-oscillatory (divergence). Since the
system possesses just one Lagrangian coordinate, unbounded oscillatory motion (flutter) cannot
occur. In fact, a dynamical system that can be schematized with a lumped mass constrained
by a linear spring and for which motion is governed by (6.2.1) is a conservative system with
total energy E (kinetic plus potential) equal to

E =
1

2
Mu̇2 +

1

2
Ku2 (6.2.2)

which is conserved during the motion. The stability of such a system can therefore be studied
statically by using Dirichlet’s theorem and then going on to determine the sign of K. If K > 0
the potential energy in the initial undeformed configuration is minimum and the system is sta-
ble whereas if K < 0 the potential energy in the initial undeformed configuration is maximum
and the system is unstable.
In Feriani and Carini (2017) systems depicted in Fig. 6.2a, 6.2b and 6.2c have already been
studied. Referring, for simplicity, to the system in Fig. 6.2a, the dependence of the stiffness
coefficient on the applied load is nonlinear, due to the adopted mass modelling, so the change
of sign of the stiffness coefficient may occur due to the presence of an asymptote. As the com-
pressive load slowly increases from zero, the stiffness coefficient increases and consequently the
vibration frequency increases. When the load tends to the critical value, the stiffness coefficient
tends to infinity and the corresponding mass displacement tends to zero (Panovko, Gubanova,
1967). If the load is slightly higher than the critical load, the other branch of the function is
involved and the stiffness coefficient is negative, corresponding to non-oscillatory unbounded
motion. This phenomenon of stable-to-unstable transition is named divergence at infinity (Fe-
lippa, 2014) and it is caused by ignoring the distributed mass of the column. It is a dynamic
instability, since it depends on the mass properties of the structure, and it can occur in sys-
tems that possess just one Lagrangian coordinate and are subjected to follower loads. In these
cases, divergence at infinity can be studied by analysing the sign of the stiffness coefficient, i.e.,
although divergence at infinity is a dynamic instability, a static method can be applied. The
phenomenon of divergence at infinity also occurs for the structures in Fig. 6.2b and 6.2c. In
this Chapter, a new lumped mass system is studied: a straight-axis beam with constant cross-
sectional area and stiffness, massless, hinged at one end, simply supported at an intermediate
point at a distance a from the hinge and with the other end free in which there is a lumped
mass and a follower force is applied (Fig. 6.3a). In the case of uniformly distributed mass,
the system was studied by Zorii and Chernukha (1971) and later by Elishakoff and Hollkamp
(1987). Intuitively, for a −→ 0 one should find the results already obtained in Feriani and
Carini (2016), while for a −→ l one should find again the Eulerian critical load. This implies
(as indeed already pointed out in Zorii and Chernukha (1971) and later by Elishakoff and Hol-
lkamp (1987)) that there should exist a transition value a = a∗ such that when a < a∗ there is
instability by divergence at infinity, while for a > a∗ there is Eulerian instability by divergence.

6.2.3 Applying a static method to detect divergence at infinity

Consider the example in Fig. 6.3a, i.e., a straight-axis beam of length l, with a constant cross-
section and moment of inertia J , with no distributed mass, hinged at one end, simply supported
at an intermediate point at distance a from the hinge and with the other end free in which
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Figure 6.2: Cantilever beam with lumped mass subject to (a) a follower force P at the free end,
(b) to a follower force P applied at an intermediate point, and (c) to a uniformly distributed
follower force p.

Figure 6.3: Beam hinged at one end, free at the other end, simply supported at an intermediate
point, with a mass concentrated at the free end and subject to (a) a follower force P at the
free end, (b) a conservative force Q and a follower force P at the free end, and (c) a uniformly
distributed follower force p.
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there is a concentrated mass M and a follower force P is applied. The stiffness coefficient
K is determined by using the direct method, that is, neglecting the mass and applying a
transverse static force F acting transversely to the beam at the free end such as to produce a
unit displacement in the direction of F .
Having chosen, as shown in Fig. 6.3a, the hinged end as the origin of the z-coordinate along
the axis of the beam and denoting by E the Young’s modulus, the deflected curve v(z), can be
obtained by prescribing

EJvIVi + PvIIi = 0 with i = 1 for 0 ≤ z ≤ a, i = 2 for a ≤ z ≤ l (6.2.3)

with boundary conditions:

v1(0) = 0, vII1 (0) = 0, v2(l) = 1, vII2 (l) = 0 (6.2.4)

and with the continuity conditions:

v1(a) = v2(a) = 0, vI1(a) = vI2(a), vII1 (a) = vII2 (a). (6.2.5)

By solving the equation of the deflected curve, it is possible to determine K:

K = −EJvIII2 (l) = Pα· a sin(αa)

αa2 sin (αl)− αal sin (αl) + l sin (αa) · [cos(αa) sin(αl)− cos(αl) sin (αa)]
(6.2.6)

with α2 = P/EJ .
Assuming c = a/l, Fig. 6.4 shows the dimensionless stiffness coefficient Kl3/EJ as a function
of αl for different c. For c = 0 a well-known case is found (Panovko, Gubanova, 1967). In this
case, asymptotes occur as

tan (αl) = αl (6.2.7)

and the first asymptote (divergence at infinity) corresponds to (Pcrl
2)EJ = 20.1934. If c = 1

another well-known case is obtained: the pinned-pinned Euler rod to which corresponds the
Eulerian critical load (Pcrl

2)EJ = 9.8696. Analysing the same graph as c increases from zero
to one, we move from instability by divergence at infinity to Eulerian instability by divergence.
Such a transition occurs when c = 0.5.
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Figure 6.4: Dimensionless stiffness coefficient Kl3/EJ versus αl when (a) c = 0, (b) c = 0.25,
(c) c = 0.5, (d) c = 0.75, (e) c = 1.
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Comparing the critical load by divergence at infinity with the Eulerian critical load
by divergence of an auxiliary structure.

Consider c = 0. As it is well known, (6.2.7) coincides with the equation that determines
the Euler buckling load of a clamped-pinned beam. This coincidence is due to the fact that
when the critical load is approached by slowly increasing the applied follower load, the stiffness
coefficient tends to infinity (Fig. 6.4a) and the displacement of the free end tends to zero.
This fact happens for all values of c between 0 and 0.5, that is, when there is instability by
divergence at infinity. A general hypothesis already highlighted in Feriani and Carini (2016)
is confirmed: when instability is due to divergence at infinity, if one considers an auxiliary
structure, different from the original one in that the lumped mass is replaced by a constraint that
blocks the corresponding Lagrangian coordinate, and if the critical load of this new structure
is due to divergence, that is, it does not depend on the mass distribution, then it coincides
with the critical load by divergence at infinity of the original structure. It is then noticed that
for c ≥ 0.5 the critical load coincides with the Eulerian critical load of the massless beam.
Therefore, it can be assumed that, in general, if one wants to determine the dynamic critical
load of a linear elastic structure subjected to follower forces in the small displacements regime, it
suffices to determine the minimum critical load between the one determined with the auxiliary
structure first introduced in Fig. 6.5a and the one determined statically (looking for equilibrium
configurations other than the trivial) starting from the assigned structure in Fig. 6.5b. Table
6.1 shows the values of the critical loads thus deduced. It can be seen that for 0 ≤ c ≤ 0.5
the correct critical loads are those of the auxiliary structure while for 0.5 ≤ c ≤ 1 the correct
critical loads are those derived statically from the actual structure.

c =
a

l

0 (Pcrl
2)EJ =20.1934 20.1934 ∞

0.1 23.2248 23.2248 986.9604
0.2 27.0533 27.0533 246.7401
0.3 31.7550 31.7550 109.6623
0.4 36.7999 36.7999 61.6850
0.5 39.4784 39.4784 39.4784
0.6 27.4156 36.7999 27.4156
0.7 20.1420 31.7550 20.1420
0.8 15.4213 27.0533 15.4213
0.9 12.1847 23.2248 12.1847
1 9.8696 20.1934 9.8696

Table 6.1: Critical loads for different values of c for (a) the real beam, (b) the auxiliary beam,
and (c) the real beam without lumped mass with a concentrated follower load P .
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Figure 6.5: (a) Auxiliary structure, (b) real beam without lumped mass.

The same analysis can be performed on the problem of Fig. 6.3b, where the beam is
subjected to both a follower and a conservative concentrated load. In Tables 6.2-6.6, the
results of the dynamic analysis are compared to the results obtained by the static analysis on
the auxiliary beam and on the real beam without the lumped mass, for different values of P
an Q.
If P has a lower value compared to Q the real values coincide with those of the real beam
without lumped mass, whereas, when P increases, the real values coincide with those of the
auxiliary structure.

c =
a

l
P = 0

0 ((P +Q)crl
2)EJ =2.467401 20.193421 2.467401

0.1 2.832306 23.224779 2.832306
0.2 3.283024 27.053319 3.283024
0.3 3.845285 31.755046 3.845285
0.4 4.551082 36.799947 4.551082
0.5 5.434132 39.478418 5.434132
0.6 6.510622 36.799947 6.510622
0.7 7.726004 31.755046 7.726004
0.8 8.873959 27.053319 8.873959
0.9 9.636865 23.224779 9.636865
1 9.869604 20.193421 9.869604

Table 6.2: Critical loads for different values of c for (a) the real beam, (b) the auxiliary beam,
and (c) the real beam without lumped mass with a concentrated follower load P and a concen-
trated conservative load Q. Here P = 0.
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c =
a

l
P = 0.5Q

0 ((P +Q)crl
2)EJ =4.386491 20.193421 4.386491

0.1 5.027210 23.224779 5.027210
0.2 5.792053 27.053319 5.792053
0.3 6.694040 31.755046 6.694040
0.4 7.724921 36.799947 7.724921
0.5 8.824308 39.478418 8.824308
0.6 9.839700 36.799947 9.839700
0.7 10.534591 31.755046 10.534591
0.8 10.727142 27.053319 10.727142
0.9 10.445219 23.224779 10.445219
1 9.869604 20.193421 9.869604

Table 6.3: Critical loads for different values of c for (a) the real beam, (b) the auxiliary beam,
and (c) the real beam without lumped mass with a concentrated follower load P and a concen-
trated conservative load Q. Here P = 0.5Q.

c =
a

l
P = Q

0 ((P +Q)crl
2)EJ =9.866812 20.193421 9.866812

0.1 10.557424 23.224779 10.557424
0.2 11.285784 27.053319 11.285784
0.3 12.004017 31.755046 12.004017
0.4 12.621084 36.799947 12.621084
0.5 13.003321 39.478418 13.003321
0.6 13.012767 36.799947 13.012767
0.7 12.593363 31.755046 12.593363
0.8 11.825351 27.053319 11.825351
0.9 10.869127 23.224779 10.869127
1 9.869604 20.193421 9.869604

Table 6.4: Critical loads for different values of c for (a) the real beam, (b) the auxiliary beam,
and (c) the real beam without lumped mass with a concentrated follower load P and a concen-
trated conservative load Q. Here P = Q.
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c =
a

l
P = 1.5Q

0 ((P +Q)crl
2)EJ =20.190719 20.193421 ∞

0.1 23.224779 23.224779 986.960440
0.2 27.053319 27.053319 115.479420
0.3 31.755046 31.755046 94.568172
0.4 36.799947 36.799947 76.718834
0.5 18.714629 39.478418 18.714629
0.6 15.813116 36.799947 15.813116
0.7 14.060247 31.755046 14.060247
0.8 12.528197 27.053319 12.528197
0.9 11.128291 23.224779 11.128291
1 9.869604 20.193421 9.869604

Table 6.5: Critical loads for different values of c for (a) the real beam, (b) the auxiliary beam,
and (c) the real beam without lumped mass with a concentrated follower load P and a concen-
trated conservative load Q. Here P = 1.5Q.

c =
a

l
P = 10Q

0 ((P +Q)crl
2)EJ =20.193420 20.193421 1.013006× 1015

0.1 23.224779 23.224779 986.960440
0.2 27.053319 27.053319 246.740110
0.3 31.755046 31.755046 104.574488
0.4 36.799947 36.799947 65.450961
0.5 39.478418 39.478418 39.478418
0.6 25.757606 36.799947 25.757606
0.7 18.921044 31.755046 18.921044
0.8 14.778474 27.053319 14.778474
0.9 11.943393 23.224779 11.943393
1 9.869604 20.193421 9.869604

Table 6.6: Critical loads for different values of c for (a) the real beam, (b) the auxiliary beam,
and (c) the real beam without lumped mass with a concentrated follower load P and a concen-
traded conservative load Q. Here P = 10Q.
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The same analysis can be performed on the problem of Fig. 6.3c. This particular problem
requires a numerical analysis, using the finite element method.
The beam is thus subdivided into standard linear finite elements with two nodes. Each node
has two degrees of freedom: the translation v and the rotation φ.
The tangent stiffness matrix and the mass matrix are computed and, in Table 6.7, the results
of the dynamic analysis are compared to the results obtained by the static analysis on the
auxiliary beam and on the real beam without the lumped mass. In this problem, it can be
seen that for 0 ≤ c ≤ 0.3 the correct critical loads are those of the auxiliary structure while for
0.4 ≤ c ≤ 1 the correct critical loads are those derived statically from the actual structure.

c =
a

l

0 (pcrl
3)EJ =57.0162 57.0162 ∞

0.1 69.4495 69.4495 1262.9830
0.2 82.4450 82.4450 276.1083
0.3 88.7741 88.7741 129.0508
0.4 76.9404 80.0298 76.9404
0.5 52.3994 65.6796 52.3994
0.6 38.8634 53.8126 38.8634
0.7 30.6110 45.1049 30.6110
0.8 25.2281 38.7692 25.2281
0.9 21.5499 34.0918 21.5499
1 18.9567 30.5741 18.9567

Table 6.7: Critical loads for different values of c for (a) the real beam, (b) the auxiliary beam,
and (c) the real beam without lumped mass with a distributed follower load p.

6.2.4 Conclusions

In conclusion, a conjecture can be formulated: consider a system with just one Lagrangian
coordinate and, if instability is due to divergence at infinity, consider an auxiliary structure,
differing from the original one in that the lumped mass is replaced by a constraint blocking the
corresponding Lagrangian coordinate. The critical load of such new structure is due to diver-
gence and it coincides with the critical load by divergence at infinity of the original structure.
Therefore, within the second order theory, considering structures with intermediate supports,
a static method was detected to determine the critical load due to divergence at infinity in
systems subjected to follower loads where the mass is modelled just as a lumped mass. The
critical load is determined statically by taking the minimum value between the Eulerian critical
load of an auxiliary structure and the Eulerian critical load of the given structure.
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6.3 Part II: Conservative systems showing instability in

tension

6.3.1 Introduction

According to Ziegler (1977), conservative systems, like the one of Fig. 6.6a, exhibiting instability
in tension were first detected by Grammel (Biezeno and Grammel 1954, cited in Ziegler 1977).
Zaccaria et al. (2011) observe that structures like the one of Fig. 6.6a have compressed parts.
Nevertheless, actually, the structure of Fig. 6.6a is fully equivalent to the structure of Fig.
6.6b where there are no compressed parts, but a linear rotational spring of negative stiffness
equal to −Pa. Zaccaria et al. (2011) found another class of structures showing instability in
tension and proved experimentally such phenomenon. In particular, Zaccaria et al. consider
two inextensible elastic rods clamped at one end and joint through a slider (see Fig. 6.7). In
Feriani and Carini (Feriani and Carini, 2017) two conservative systems showing instability due
to a tensile load are presented. However, their load cannot be defined as “dead load” according
to Zaccaria et al. (2011). In particular, in Feriani and Carini (2017) the example depicted in
Fig. 6.8a is considered. It is obtained by symmetrizing the load of Fig. 6.8b. It corresponds to
summing Beck’s and Reut’s non conservative loading conditions, where in each case the vertical
load is equal to P/2. The resulting applied load is conservative. In Feriani and Carini (2017)
the transverse displacement of the free end is considered. The stiffness coefficient K, that is, the
transverse force on the free end needed to produce a unit displacement, was calculated. In order
to determine the stiffness coefficient, consider the equation EJvIV +PvII = 0 together with the
boundary conditions written hereafter: v(0) = 0, v

′

(0) = 0 v(l) = 1, EJv
′′

(l) = −P/2. Once
the deflected curve v(z) is known, the stiffness coefficient, which is equal to the transverse
force applied at the free end, can be determined by prescribing equilibrium. If P < 0 the
stiffness coefficient K, as a function of P , presents only one root. Thus, a critical load by
divergence is obtained when the conservative system of Fig. 6.8a is subjected to traction and
the dimensionless critical load −Pl2/EJ = 5.7569 is found. Similarly, the symmetrization
of the system of Fig. 6.9b leads to the conservative system of Fig. 6.9a, that is subject to
instability when a traction load is applied. Using the same procedure exploited for the first
case Feriani and Carini obtained −pl3/EJ = 21.3897. In this section a new system is studied:
a straight-axis beam of length l with constant cross-sectional area and stiffness, hinged at one
end, simply supported at an intermediate point distant a from the hinge is presented and two
different follower forces causing traction are applied. The first one leads to a “generalized”
Beck column in the sense that when c = a/l = 0 the Beck column is realized. The second
one leads to a “generalized” Reut column in the sense that when c = 0 the Reut column is
realized. A new analogy between the generalized Beck plus generalized Reut column and the
elastic circular arch is shown. A discussion on the results obtained is presented. In particular,
it will be shown that there is a close relationship between the Zaccaria et al. structure and the
Feriani and Carini structure.
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Figure 6.6: (a) Buckling by tension: the axial load P is applied at the end of a rigid handle
of length a with is pointing downwards and is in alignment with the tangent of the deflection
curve at the upper end; (b) An equivalent structure.

Figure 6.7: Elastic system under tensile dead loading composed by two inextensible elastic rods
clamped at one end and jointed through a slider, a device allowing only relative sliding between
the two connected pieces (Zaccaria et al. (2011)).
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Figure 6.8: (a) A beam clamped at one end under conservative load at the other end. The
conservative load is obtained symmetrizing the non conservative follower force (b), (Feriani and
Carini, 2017).

Figure 6.9: (a) A beam clamped at one end, under distributed conservative load obtained
symmetrizing the non conservative distributed follower load (b). (Feriani and Carini, 2017).
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6.3.2 Some remarks about the generalized Reut column, the gener-
alized Beck column and the elastic circular arch

As it is well known, the generalized Beck (Fig. 6.10a) and Reut (Fig. 6.10b) columns are
classical examples of non-conservative problems. When c = 0 the beams specialize into Beck
and Reut columns. When c = 1 they both become beams hinged at one end, simply supported
at the other end, and the loads from non-conservative become conservative. The generalized
Beck (Fig. 6.10a) and Reut (Fig. 6.10b) columns are governed, in the absence of inertial forces,
by the following equations, with the relevant boundary conditions, all in terms of transversal
displacements v(z) only:

generalized Beck column:





EJ
d4v

dz4
+ P

d2v

dz2
= 0

v(0) = 0,
d2v

dz2

∣∣∣∣
0

= 0, v(a) = 0,
d2v

dz2

∣∣∣∣
l

= 0,
d3v

dz3

∣∣∣∣
l

= 0

(6.3.1)

generalized
Reut column:





EJ
d4v

dz4
+ P

d2v

dz2
= 0

v(0) = 0,
d2v

dz2

∣∣∣∣
0

= 0, v(a) = 0,

[
d2v

dz2
+

P

EJ
v

]

l

= 0,

[
d3v

dz3
+

P

EJ

dv

dz

]

l

= 0.

(6.3.2)
Let us now consider the new problem of Fig. 6.11a, where the same column is subjected to the
non-conservative loads of the generalized Beck and Reut columns simultaneously. It is easy to
derive the relevant governing equation and boundary conditions as follows:

generalized Beck
+ Reut column:





EJ
d4v

dz4
+ 2P

d2v

dz2
= 0

v(0) = 0,
d2v

dz2

∣∣∣∣
0

= 0, v(a) = 0,

[
d2v

dz2
+

P

EJ
v

]

l

= 0,

[
d3v

dz3
+

P

EJ

dv

dz

]

l

= 0.

(6.3.3)
It is possible now to recognize that this new problem is conservative.
In fact, as is easy to see, the differential operator, including boundary conditions, related to
Reut’s rod is the adjoint operator of the operator related to Beck’s rod. Therefore, the sum
operator of the two problems turns out to be self-adjoint. This means that the Beck’s rod plus
Reut’s rod system is conservative.
This is corroborated by the following nice analogy. Consider the arch beam in Figure 6.11b.
The governing equation of the arch problem of Fig. 6.11b in terms of radial displacements v(s)
only, with the relevant boundary conditions, is written as follows:

Circular
arch problem:





d4v

ds4
+

2

R2

d2v

ds2
+

v

R4
= 0

v(0) = 0,
d2v

ds2

∣∣∣∣
0

= 0, v(a) = 0,

[
d2v

ds2
+

1

R2
v

]

l

= 0,

[
d3v

ds3
+

1

R2

dv

ds

]

l

= 0.

(6.3.4)
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We immediately recognize that this equation and relevant boundary conditions are highly sim-
ilar to those of the generalized Beck + Reut columns (Fig. 6.11a) when 1/R2 in Eq. (6.3.4)
is substituted by P/EJ , except for the presence of the term v/R4 in Eq. (6.3.4). If the new
arch beam of Fig. 6.11b is now considered, with a bed of springs having negative stiffness
K = −EJ/R4, the above term v/R4 of Eq. (6.3.4) disappears and then the set of equations
(6.3.4) becomes the same as Eq. (6.3.3) governing the generalized Beck + Reut column prob-
lem (Fig. 6.11a). Then, this allows to state that the generalized Beck + Reut column problem
is conservative and the total potential energy will be analogous to the following deformation
energy of the arch of Fig. 6.11b:

U(v) =
1

2

∫ l

0

EJ

(
d2v

ds2
+

v

R2

)2

ds− EJ

2R4

∫ l

0

v2 ds. (6.3.5)

After replacing 1/R2 by P/EJ , we arrive, by virtue of the analogy, at the following form of the
total potential energy:

U(v) =
1

2

∫ l

0

EJ

(
d2v

ds2

)2

ds+ P

∫ l

0

v
d2v

ds2
ds (6.3.6)

which, with integration by parts, becomes

U(v) =
1

2

∫ l

0

EJ

(
d2v

ds2

)2

ds+ P

∫ l

0

(
dv

ds

)2

ds+ Pv(l)
dv

ds
(l) (6.3.7)

where we recognize the strain energy of the beam 1
2

∫ l

0
EJ

(
d2v
ds2

)2

ds and the potential energy

of the external loads P
∫ l

0

(
dv
ds

)2
ds+ Pv(l) dv

ds
(l).

6.3.3 Stability of the new conservative systems

Consider first the example in Fig. 6.11a (with tensile loads). As it can be seen, it is obtained
by symmetrizing the load in Fig. 6.10a and it corresponds to the sum of the generalized Beck
and Reut loading conditions. The resulting load is conservative and, therefore, the buckling
conditions are independent of the mass distribution and the critical buckling load can be ob-
tained with the standard energy criterion. In the specific case, the results shown in Table 6.8
are obtained. It can be seen that tensile buckling is possible for any c except for c = 1. As
c increases, the critical load also increases. For c = 0, the results presented in Feriani and
Carini (2017) are obtained again. Similarly, the symmetrization of the second example (Fig.
6.12a), for which the finite element method is used, leads to a conservative system that can
buckle under tension. The results are shown in Table 6.9 changing the value of c, meaning,
by changing the position of the intermediate support. For c = 0, as the number of degrees of
freedom increases, the value of the dimensionless critical load tends to 21.389 as in Feriani and
Carini (2017). In Table 6.10 the tensile dimensionless critical load obtained for c = 0.5 is listed
as a function of the number n finite elements adopted.
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Figure 6.10: Beam hinged at one end, free at the other end, simply supported at an intermediate
point, and subjected to (a) a follower force P at the free end (generalized Beck column), (b) a
force P which is always directed along the initial undeformed axis, with a fixed direction line
of acting (generalized Reut column).

Figure 6.11: (a) An example of conservative load as sum of non-conservative loads, (b) An
analogous system: the circular arch on a bed of springs with stiffness K = −EJ/R4.
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c = a/l 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pcrl
2/EJ 5.76 6.64 7.84 9.55 12.12 16.33 24.05 40.74 88.35 343.01 ∞

Table 6.8: Values of dimensionless critical loads related to the structure of Fig. 6.11a.

Figure 6.12: (a) Uniformly distributed follower force p; (b) Uniformly distributed force p with
a fixed direction; (c) Conservative load as sum of the previous two non-conservative loads.

c = 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
a/l

pcrl
3

EJ
21.39 26.65 34.82 48.45 73.10 122.14 233.34 544.79 1827.31 15134.24 ∞

Table 6.9: Values of dimensionless critical loads related to the structure of Fig. 6.12.

n 2 4 6 8 10

pcrl
3/EJ 129.2980 123.2868 122.3634 122.1920 122.1435

Table 6.10: Values of dimensionless critical loads related to the structure of Fig. 6.12 for various
discretizations and for c = 0.5.
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6.3.4 Discussion and Conclusions

Two new structures are studied that exhibit instability when a traction load is applied. These
structures specialize into two others, already presented in Feriani and Carini (2017). A nice
analogy is shown between the generalized Beck + Reut column and the elastic circular arch
problem. In Zaccaria et al. (2011) “dead loads” are defined as loads that are applied at a point
in the structure and remain applied at that point even after displacement has occurred and
always maintain the original direction. Other loads are termed “live loads”. In Zaccaria et al.
(2011) the structure in Fig. 6.7, subjected to a “dead” load, which shows tensile instability,
was studied. In Feriani and Carini (2017), another structure exhibiting tensile instability, but
subjected to “live” loads, was considered. Consider the equilibrium of the slider present in the
structure of Fig. 6.7. The internal actions in the slider result as in Fig. 6.13a. It is evident
that the conservative loads applied to the structure of Fig. 6.11a are identical to the internal
actions in the slider to which a “dead” load is added (see Fig. 6.13). Therefore, barring a
“dead” load, the load applied in one structure coincides with the constraining reaction in the
other and vice versa. In conclusion, it seems that the definition of “dead” load must somehow
consider the set of active and reactive loads.

Figure 6.13: (a) Slider internal actions; (b) Beck plus Reut beams; (c) Beam subjected to a
dead conservative load.
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Chapter 7

Conclusions

The mathematical formulation of phenomena that evolve over time generally requires the res-
olution of systems of differential equations with initial conditions. These particular problems
cannot be often solved analytically and, therefore, numerical integration techniques are used in
order to obtain an accurate approximation of the solution.
An interesting alternative that could be exploited is the variational approach. As it has already
been pointed out in the context of this thesis, variational methods are valid both for a qualita-
tive study of the problem (study of existence and uniqueness of the solution, its regularity, etc.),
and for a quantitative study, namely from a numerical point of view (evaluation of convergence,
estimation of the error of the approximate solution). This thesis addresses the application of
variational principles to several evolution problems of engineering interest such as the linear
viscoelastic problem, the heat conduction problem, the derivation of upper bounds to the ho-
mogenized viscous kernels of liner viscoelastic composites, the extension of the Capurso-Maier
functional to fracture mechanics and the analysis of dynamical instability of systems with one
Lagrangian coordinate.
The common thread of all these different and complex problems is the exploitation of function-
als based on convolutive bilinear forms. In fact, Tonti (1973) highlighted the crucial role played
by the choice of a suitable bilinear form, in order to provide a variational formulation for the
given problem. In particular, he showed how the use of a bilinear form of the convolutive type
allows one to provide a variational formulation for initial value problems, making unnecessary
their transformation into problems with only boundary conditions.
Furthermore, if one decomposes the time integration interval (or the space integration interval
as in the dynamic instability analysis) of the problem into two sub-intervals of equal length, as
shown in Carini and Mattei (2015), new variational formulations can be derived: in fact, by the
adopted time splitting, one is able to isolate a part of the functional that represents the free
energy of the system and is, therefore, in general, semidefinite positive. In conclusion, the use
of the convolutive (and biconvolutive) bilinear forms provides good numerical results as well.
During the thesis (and overall during the PhD), several scripts have been developed in Matlab
to solve all the problems and, as for the chapter concerning the definition of bounds, the RVEs
and models have been analysed using the ABAQUS software.

A great deal of work remains to be done.
As for the linear viscoelastic problem and the heat conduction problem, the choice of the most
suitable time shape functions remains an open issue, here solved with a trial and error method.
Moreover, the behaviour of the solution calculated using the splitted functionals with a reduc-
tion of degrees of freedom on the second subinterval still needs a theoretical explanation.
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Upper bounds for the relaxation and creep kernels for bodies subjected to volumetric strains
haven’t been defined yet.
Regarding the fracture mechanics problem, the issue of the determination of the hardening
component, which strictly depends on the geometry of the crack, thus is not known a priori,
constitutes a significant obstacle.
Furthermore, only a hint on a possible variational formulation applicable to viscoelastic com-
posites is given.
As for the dynamic stability Chapter, there are still many intermediate problems to take into
account, which have not been addressed in the context of this thesis, such as structures with
two or more concentrated masses or systems with both distributed and concentrated masses.
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