The following thesis aims to study and to develop biomedical devices made through additive manufacturing. Additive manufacturing has been experiencing a strong growth in recent years, mainly due to its ability to easily realize complex geometries. This feature allows customization of products at a competitive cost. In addition, material waste is greatly reduced by the manufacturing principle. All these properties helped the recent years diffusion of additive manufacturing in fields such as automotive, aerospace and biomedical. This thesis focuses on the use of some of the most popular additive technologies for the production of biomedical devices. In particular, the work focused mainly on the fabrication of two models, the first to study the development of black floaters within the vitreous body of the eye, and the second to emulate the mandibular bone behavior during drilling for the installation of dental implants. The eye model consists of two main elements, a scaffold and a hydrogel. The scaffold contains and provides support to the hydrogel. It must be transparent, biocompatible easily handled in the laboratory. It is printed by stereolithography. The hydrogel, on the other hand, is intended to provide a 3D environment for cell growth and development. Therefore, it must be biocompatible and have adequate mechanical properties together with good printability. The 3D scaffold structure was made by material extrusion. The mandibular bone model was made by fused filament fabrication. The model consists of two parts, a solid outer part to emulate cortical bone, and a porous inner part to emulate trabecular bone. Drilling tests were performed with a dental drill attached to collaborative robots. Finally, the research covered two additional areas, the study of the properties of lattice structures made by laser-based- powder bed fusion and the evaluation of different surface finish treatments. The following thesis, therefore, has the following organization. Chapter 1 presents an introduction on additive manufacturing and bioprinting. The technologies and materials used are briefly described, and examples of additive manufacturing applications in the biomedical field are given. The following chapters, on the other hand, report published or forthcoming articles regarding the various topics mentioned above. Specifically, Chapter 2 reports the research on lattice structures and their fabrication. Chapters 3 and 4 include studies related to the eye model. Chapter 3 focuses on the fabrication of the support, and Chapter 4 on the formulation and evaluation of the hydrogel. Chapter 5 presents the study of the model for emulating the behavior of mandibular bone upon drilling, while Chapter 6, the last of this work, focuses on surface finishing processes. In conclusion, additive manufacturing includes various processes that are very different from each other but have many common points such as flexibility, freedom of design, and customization. By exploiting these properties, it is possible to make tailored objects, especially important in fields such as the biomedical one, where customization and specificity are a great added value.
Il seguente lavoro di tesi ha come obiettivo lo studio e la realizzazione di device biomedicali realizzati tramite la manifattura additiva. La manifattura additiva sta avendo una forte crescita negli ultimi anni grazie soprattutto alla possibilità di realizzare facilmente geometrie complesse. Questa caratteristica permette di personalizzare i prodotti ad un costo competitivo. Inoltre, lo spreco di materiale viene ridotto moltissimo dal principio di fabbricazione. Tutte queste proprietà hanno fatto in modo che negli ultimi anni la manifattura additiva prendesse sempre più piede in campi come l’automotive, l’aerospace e il biomedicale. Questo lavoro di tesi è focalizzato sull’utilizzo di alcune tra le più diffuse tecnologie additive per la produzione di device biomedicali. In particolare, il lavoro si è concentrato principalmente sulla realizzazione di due modelli, il primo per lo studio dello sviluppo dei black floaters all’interno del corpo vitreo dell’occhio, il secondo per l’emulazione del comportamento dell’osso mandibolare durante la foratura per l’installazione di impianti dentali. Il modello dell’occhio è composto da due elementi principali, un supporto e un hydrogel. Il supporto serve a contenere e supportare l’hydrogel. Deve essere trasparente, biocompatibile facilmente manovrabile in laboratorio. La sua realizzazione è avvenuta tramite stereolitografia. L’hydrogel, invece, ha lo scopo di fornire un’ambiente 3D per la crescita e sviluppo delle cellule. Deve perciò anche lui essere biocompatibile e con adeguate caratteristiche meccaniche e di stampabilità. La struttura 3D è stata realizzata tramite material extrusion. Il modello di osso mandibolare è stato realizzato tramite fused filament fabrication. Il modello si compone di due parti, una parte esterna piena per emulare l’osso corticale, e una parte interna porosa per emulare l’osso trabecolare. Le prove di foratura sono state realizzate con un trapano dentistico agganciato a robot collaborativi. La ricerca ha infine toccato ulteriori due ambiti, lo studio delle proprietà di strutture lattice realizzate tramite laser based- powder bed fusion e la valutazione di diversi trattamenti di finitura superficiale. La tesi, dunque, ha la seguente organizzazione. Il capitolo 1 presenta un’introduzione sull’additive manufacturing e il bioprinting. Le tecnologie ed i materiali utilizzati sono brevemente descritti e sono riportati alcuni esempi di applicazione della manifattura additiva nel campo biomedicale. I capitoli seguenti, invece, riportano gli articoli pubblicati o in corso di pubblicazione riguardo alle diverse tematiche affrontate. Nello specifico, il capitolo 2 riporta la ricerca sulle strutture lattice e la loro realizzazione. I capitoli 3 e 4 comprendono gli studi relativi al modello dell’occhio. Il capitolo 3 si concentra sulla realizzazione del supporto, il 4 sulla formulazione e la valutazione dell’hydrogel. Il capitolo 5 approfondisce lo studio del modello per l’emulazione del comportamento dell’osso mandibolare a foratura mentre il capitolo 6, l’ultimo di questo elaborato, si concentra sui processi di finitura superficiale. Per concludere, la manifattura additiva include processi molto diversi tra loro, ma che presentano molti punti in comune come la flessibilità, libertà di progettazione e personalizzazione. Sfruttando queste proprietà è possibile realizzare oggetti su misura, soprattutto in campi come quello biomedicale dove la personalizzazione e la specificità sono fondamentali.
Biomanufacturing Technologies for Tissue Engineering / Riva, Leonardo. - (2023 Feb 24).
Biomanufacturing Technologies for Tissue Engineering
RIVA, LEONARDO
2023-02-24
Abstract
The following thesis aims to study and to develop biomedical devices made through additive manufacturing. Additive manufacturing has been experiencing a strong growth in recent years, mainly due to its ability to easily realize complex geometries. This feature allows customization of products at a competitive cost. In addition, material waste is greatly reduced by the manufacturing principle. All these properties helped the recent years diffusion of additive manufacturing in fields such as automotive, aerospace and biomedical. This thesis focuses on the use of some of the most popular additive technologies for the production of biomedical devices. In particular, the work focused mainly on the fabrication of two models, the first to study the development of black floaters within the vitreous body of the eye, and the second to emulate the mandibular bone behavior during drilling for the installation of dental implants. The eye model consists of two main elements, a scaffold and a hydrogel. The scaffold contains and provides support to the hydrogel. It must be transparent, biocompatible easily handled in the laboratory. It is printed by stereolithography. The hydrogel, on the other hand, is intended to provide a 3D environment for cell growth and development. Therefore, it must be biocompatible and have adequate mechanical properties together with good printability. The 3D scaffold structure was made by material extrusion. The mandibular bone model was made by fused filament fabrication. The model consists of two parts, a solid outer part to emulate cortical bone, and a porous inner part to emulate trabecular bone. Drilling tests were performed with a dental drill attached to collaborative robots. Finally, the research covered two additional areas, the study of the properties of lattice structures made by laser-based- powder bed fusion and the evaluation of different surface finish treatments. The following thesis, therefore, has the following organization. Chapter 1 presents an introduction on additive manufacturing and bioprinting. The technologies and materials used are briefly described, and examples of additive manufacturing applications in the biomedical field are given. The following chapters, on the other hand, report published or forthcoming articles regarding the various topics mentioned above. Specifically, Chapter 2 reports the research on lattice structures and their fabrication. Chapters 3 and 4 include studies related to the eye model. Chapter 3 focuses on the fabrication of the support, and Chapter 4 on the formulation and evaluation of the hydrogel. Chapter 5 presents the study of the model for emulating the behavior of mandibular bone upon drilling, while Chapter 6, the last of this work, focuses on surface finishing processes. In conclusion, additive manufacturing includes various processes that are very different from each other but have many common points such as flexibility, freedom of design, and customization. By exploiting these properties, it is possible to make tailored objects, especially important in fields such as the biomedical one, where customization and specificity are a great added value.File | Dimensione | Formato | |
---|---|---|---|
Thesis_ Riva Leonardo_XXXV Cycle.pdf
accesso aperto
Descrizione: TESI
Tipologia:
Tesi di dottorato
Dimensione
6.59 MB
Formato
Adobe PDF
|
6.59 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.