During the acute phase of the COVID-19 pandemic, hospitals faced a challenge to manage patients, especially those with other comorbidities and medical needs, such as cancer patients. Here, we use Process Mining to analyze real-world therapeutic pathways in a cohort of 1182 cancer patients of the Lausanne University Hospital following COVID-19 infection. The algorithm builds trees representing sequences of coarse-grained events such as Home, Hospitalization, Intensive Care and Death. The same trees can also show probability of death or time-to-event statistics in each node. We introduce a new tool, called Differential Process Mining, which enables comparison of two patient strata in each node of the tree, in terms of hits and death rate, together with a statistical significance test. We thus compare management of COVID-19 patients with an active cancer in the first vs. second COVID-19 waves to quantify hospital adaptation to the pandemic. We also compare patients having undergone systemic therapy within 1 year to the rest of the cohort to understand the impact of an active cancer and/or its treatment on COVID-19 outcome. This study demonstrates the value of Process Mining to analyze complex event-based real-world data and generate hypotheses on hospital resource management or on clinical patient care.

A differential process mining analysis of COVID-19 management for cancer patients

Gatta, Roberto;
2022-01-01

Abstract

During the acute phase of the COVID-19 pandemic, hospitals faced a challenge to manage patients, especially those with other comorbidities and medical needs, such as cancer patients. Here, we use Process Mining to analyze real-world therapeutic pathways in a cohort of 1182 cancer patients of the Lausanne University Hospital following COVID-19 infection. The algorithm builds trees representing sequences of coarse-grained events such as Home, Hospitalization, Intensive Care and Death. The same trees can also show probability of death or time-to-event statistics in each node. We introduce a new tool, called Differential Process Mining, which enables comparison of two patient strata in each node of the tree, in terms of hits and death rate, together with a statistical significance test. We thus compare management of COVID-19 patients with an active cancer in the first vs. second COVID-19 waves to quantify hospital adaptation to the pandemic. We also compare patients having undergone systemic therapy within 1 year to the rest of the cohort to understand the impact of an active cancer and/or its treatment on COVID-19 outcome. This study demonstrates the value of Process Mining to analyze complex event-based real-world data and generate hypotheses on hospital resource management or on clinical patient care.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/568647
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact