Knowledge of the spinal cord (SC) vascular supply is important in patients undergoing procedures that involve the thoracic and thoracoabdominal aorta. However, the SC vasculature has a complex anatomy, and teaching is often based only on anatomical sketches with highly variable accuracy; historically, this has required a "leap of faith" on the part of aortic surgeons. Fortunately, this "leap of faith" is no longer necessary given recent breakthroughs in imaging technologies and postprocessing software. Imaging methods have expanded the non-invasive diagnostic ability to determine a patient's SC vascular pattern, particularly in detecting the presence and location of the artery of Adamkiewicz. CT is the imaging modality of choice for most patients with thoracic and thoracoabdominal aortic disease, proving especially useful in the determination of feasibility and planning of endovascular treatment. Thus the data set required for analysis of SC vascular anatomy is usually already available. We have concentrated our efforts on CT angiography, which offers particularly good imaging capabilities with state-of-the-art multidetector scanners. Multidetector row helical CT provides examinations of an extensive range in the craniocaudal direction with thin collimation in a short time interval, giving excellent temporal and spatial resolution. This paper provides examples of the SC vasculature imaging quality that can be obtained with 64 row scanners and appropriate postprocessing. Knowledge of the principal anatomical features of the SC blood supply of individual patients undergoing open or endovascular thoracoabdominal procedures has several potential benefits. For open surgery, analysis of the SC vasculature could tell us the aortic region that feeds the Adamkiewicz artery and thus needs to be reimplanted. For endovascular procedures, we can determine whether the stent-graft will cover the Adamkiewicz artery, thus avoiding unnecessary coverage. CT data can also be used to stratify risk of SC ischemia and guide the selective use of spinal cord injury prevention strategies.
An anatomical review of spinal cord blood supply
Bertoglio L;
2015-01-01
Abstract
Knowledge of the spinal cord (SC) vascular supply is important in patients undergoing procedures that involve the thoracic and thoracoabdominal aorta. However, the SC vasculature has a complex anatomy, and teaching is often based only on anatomical sketches with highly variable accuracy; historically, this has required a "leap of faith" on the part of aortic surgeons. Fortunately, this "leap of faith" is no longer necessary given recent breakthroughs in imaging technologies and postprocessing software. Imaging methods have expanded the non-invasive diagnostic ability to determine a patient's SC vascular pattern, particularly in detecting the presence and location of the artery of Adamkiewicz. CT is the imaging modality of choice for most patients with thoracic and thoracoabdominal aortic disease, proving especially useful in the determination of feasibility and planning of endovascular treatment. Thus the data set required for analysis of SC vascular anatomy is usually already available. We have concentrated our efforts on CT angiography, which offers particularly good imaging capabilities with state-of-the-art multidetector scanners. Multidetector row helical CT provides examinations of an extensive range in the craniocaudal direction with thin collimation in a short time interval, giving excellent temporal and spatial resolution. This paper provides examples of the SC vasculature imaging quality that can be obtained with 64 row scanners and appropriate postprocessing. Knowledge of the principal anatomical features of the SC blood supply of individual patients undergoing open or endovascular thoracoabdominal procedures has several potential benefits. For open surgery, analysis of the SC vasculature could tell us the aortic region that feeds the Adamkiewicz artery and thus needs to be reimplanted. For endovascular procedures, we can determine whether the stent-graft will cover the Adamkiewicz artery, thus avoiding unnecessary coverage. CT data can also be used to stratify risk of SC ischemia and guide the selective use of spinal cord injury prevention strategies.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.