Europe calls for a transition to the circular economy model based on recycling, reuse, the proper design of products, and repair. Recycling requires energy and chemical products for waste processing; on the contrary, reusing reduces the impact of transportation and expands the life of materials that cannot be recycled. This article highlights the characteristics of selected end-of-life materials; it aims to raise awareness among manufacturers to consider products’ conscious design to facilitate their reuse in different sectors. Panels 7 cm thick, realized by assembling cardboard packaging, egg boxes, bulk polyester, and felt, have been experimentally tested to understand whether they can be installed indoors to improve thermal and acoustic comfort. The panels’ equivalent thermal conductivity λeq measured through the guarded hot plate method is 0.071 W/m K. Acoustic tests have been performed in a sound transmission room and a reverberation room. The weighted sound reduction index Rw is 19 dB, the weighted sound absorption coefficient αw is 0.30, and the noise reduction coefficient NRC is 0.64. The measured properties have been compared to those of commercial materials, and the results show that the panels have interesting properties from the thermal and acoustic points of view. They could be employed in the building sector and in disadvantaged contexts where low-income people cannot afford commercial insulating materials. Although other factors, such as fire resistance, need to be evaluated, these results show that the proposed approach is feasible.

Thermal and Acoustic Characterization of Innovative and Unconventional Panels Made of Reused Materials

Neri Manuela
2022-01-01

Abstract

Europe calls for a transition to the circular economy model based on recycling, reuse, the proper design of products, and repair. Recycling requires energy and chemical products for waste processing; on the contrary, reusing reduces the impact of transportation and expands the life of materials that cannot be recycled. This article highlights the characteristics of selected end-of-life materials; it aims to raise awareness among manufacturers to consider products’ conscious design to facilitate their reuse in different sectors. Panels 7 cm thick, realized by assembling cardboard packaging, egg boxes, bulk polyester, and felt, have been experimentally tested to understand whether they can be installed indoors to improve thermal and acoustic comfort. The panels’ equivalent thermal conductivity λeq measured through the guarded hot plate method is 0.071 W/m K. Acoustic tests have been performed in a sound transmission room and a reverberation room. The weighted sound reduction index Rw is 19 dB, the weighted sound absorption coefficient αw is 0.30, and the noise reduction coefficient NRC is 0.64. The measured properties have been compared to those of commercial materials, and the results show that the panels have interesting properties from the thermal and acoustic points of view. They could be employed in the building sector and in disadvantaged contexts where low-income people cannot afford commercial insulating materials. Although other factors, such as fire resistance, need to be evaluated, these results show that the proposed approach is feasible.
File in questo prodotto:
File Dimensione Formato  
atmosphere-13-01825-v2 (3).pdf

accesso aperto

Tipologia: Full Text
Licenza: Copyright dell'editore
Dimensione 6.38 MB
Formato Adobe PDF
6.38 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/567485
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact