Let $X_n(K)$ be a building of Coxeter type $X_n=A_n$ or $X_n=D_n$ or defined over a given division ring $K$ (a field when $X_n=D_n$). For a non-connected set $J$ of nodes of the diagram $X_n$, let $\Gamma(K)=Gr_J(X_n(K))$ be the $J$-grassmannian of $X_n(K)$ . We prove that $\Gamma(K)$ cannot be generated over any proper sub-division ring $K_0$ of $K$ . As a consequence, the generating rank of $\Gamma(K)$ is infinite when $K$ is not finitely generated. In particular, if $K$ is the algebraic closure of a finite field of prime order then the generating rank of $Gr_{1,n}(A_n(K))$ is infinite, although its embedding rank is either $(n+1)^2-1$ or $(n+1)^2$.

On the generation of some Lie-type geometries

L. Giuzzi
;
2023-01-01

Abstract

Let $X_n(K)$ be a building of Coxeter type $X_n=A_n$ or $X_n=D_n$ or defined over a given division ring $K$ (a field when $X_n=D_n$). For a non-connected set $J$ of nodes of the diagram $X_n$, let $\Gamma(K)=Gr_J(X_n(K))$ be the $J$-grassmannian of $X_n(K)$ . We prove that $\Gamma(K)$ cannot be generated over any proper sub-division ring $K_0$ of $K$ . As a consequence, the generating rank of $\Gamma(K)$ is infinite when $K$ is not finitely generated. In particular, if $K$ is the algebraic closure of a finite field of prime order then the generating rank of $Gr_{1,n}(A_n(K))$ is infinite, although its embedding rank is either $(n+1)^2-1$ or $(n+1)^2$.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0097316522000814-main.pdf

Open Access dal 07/09/2024

Tipologia: Full Text
Licenza: Creative commons
Dimensione 530.62 kB
Formato Adobe PDF
530.62 kB Adobe PDF Visualizza/Apri
Arxiv-v2.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 347.25 kB
Formato Adobe PDF
347.25 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/562016
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact