Let $X_n(K)$ be a building of Coxeter type $X_n=A_n$ or $X_n=D_n$ or defined over a given division ring $K$ (a field when $X_n=D_n$). For a non-connected set $J$ of nodes of the diagram $X_n$, let $\Gamma(K)=Gr_J(X_n(K))$ be the $J$-grassmannian of $X_n(K)$ . We prove that $\Gamma(K)$ cannot be generated over any proper sub-division ring $K_0$ of $K$ . As a consequence, the generating rank of $\Gamma(K)$ is infinite when $K$ is not finitely generated. In particular, if $K$ is the algebraic closure of a finite field of prime order then the generating rank of $Gr_{1,n}(A_n(K))$ is infinite, although its embedding rank is either $(n+1)^2-1$ or $(n+1)^2$.
On the generation of some Lie-type geometries
L. Giuzzi
;
2023-01-01
Abstract
Let $X_n(K)$ be a building of Coxeter type $X_n=A_n$ or $X_n=D_n$ or defined over a given division ring $K$ (a field when $X_n=D_n$). For a non-connected set $J$ of nodes of the diagram $X_n$, let $\Gamma(K)=Gr_J(X_n(K))$ be the $J$-grassmannian of $X_n(K)$ . We prove that $\Gamma(K)$ cannot be generated over any proper sub-division ring $K_0$ of $K$ . As a consequence, the generating rank of $\Gamma(K)$ is infinite when $K$ is not finitely generated. In particular, if $K$ is the algebraic closure of a finite field of prime order then the generating rank of $Gr_{1,n}(A_n(K))$ is infinite, although its embedding rank is either $(n+1)^2-1$ or $(n+1)^2$.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0097316522000814-main.pdf
Open Access dal 07/09/2024
Tipologia:
Full Text
Licenza:
Creative commons
Dimensione
530.62 kB
Formato
Adobe PDF
|
530.62 kB | Adobe PDF | Visualizza/Apri |
Arxiv-v2.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
347.25 kB
Formato
Adobe PDF
|
347.25 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.