Linear error-correcting codes can be used for constructing secret sharing schemes; however, finding in general the access structures of these secret sharing schemes and, in particular, determining efficient access structures is difficult. Here we investigate the properties of certain algebraic hypersurfaces over finite fields, whose intersection numbers with any hyperplane only takes a few values; these varieties give rise to q-divisible linear codes with at most 5 weights. Furthermore, for q odd, these codes turn out to be minimal and we characterize the access structures of the secret sharing schemes based on their dual codes. Indeed, the secret sharing schemes thus obtained are democratic, that is each participant belongs to the same number of minimal access sets and can easily be described

Some hypersurfaces over finite fields, minimal codes and secret sharing schemes

Luca Giuzzi
2022-01-01

Abstract

Linear error-correcting codes can be used for constructing secret sharing schemes; however, finding in general the access structures of these secret sharing schemes and, in particular, determining efficient access structures is difficult. Here we investigate the properties of certain algebraic hypersurfaces over finite fields, whose intersection numbers with any hyperplane only takes a few values; these varieties give rise to q-divisible linear codes with at most 5 weights. Furthermore, for q odd, these codes turn out to be minimal and we characterize the access structures of the secret sharing schemes based on their dual codes. Indeed, the secret sharing schemes thus obtained are democratic, that is each participant belongs to the same number of minimal access sets and can easily be described
File in questo prodotto:
File Dimensione Formato  
2105.14508.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 285.01 kB
Formato Adobe PDF
285.01 kB Adobe PDF Visualizza/Apri
Aguglia2022_Article_SomeHypersurfacesOverFiniteFie.pdf

solo utenti autorizzati

Tipologia: Full Text
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 307.69 kB
Formato Adobe PDF
307.69 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/558779
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact