Abstract: In this paper we compute the generating rank of k-polar Grassmannians defined over commutative division rings. Among the new results, we compute the generating rank of k-Grassmannians arising from Hermitian forms of Witt index n defined over vector spaces of dimension N>2n. We also study generating sets for the 2-Grassmannians arising from quadratic forms of Witt index n defined over V(N,Fq) for q=4,8,9 and 2n≤N≤2n+2. We prove that for N>6 they can be generated over the prime subfield, thus determining their generating rank.

The generating rank of a polar Grassmannian

Giuzzi L.;
2021-01-01

Abstract

Abstract: In this paper we compute the generating rank of k-polar Grassmannians defined over commutative division rings. Among the new results, we compute the generating rank of k-Grassmannians arising from Hermitian forms of Witt index n defined over vector spaces of dimension N>2n. We also study generating sets for the 2-Grassmannians arising from quadratic forms of Witt index n defined over V(N,Fq) for q=4,8,9 and 2n≤N≤2n+2. We prove that for N>6 they can be generated over the prime subfield, thus determining their generating rank.
File in questo prodotto:
File Dimensione Formato  
10.1515_advgeom-2021-0022.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 914.47 kB
Formato Adobe PDF
914.47 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/558778
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 3
social impact