The fall armyworm, Spodoptera frugiperda (J.E. Smith), is an invasive pest threatening crop production and food security worldwide. High concerns are linked to the potential establishment of the species in Europe. The high migratory capacity of S. frugiperda causes concerns about the potential impacts of transient populations invading new areas from suitable hotspots. In the present work, we developed and used a physiologically-based demographic model to quantitatively assess the risks of S. frugiperda in Europe. The risks were assessed considering a best-, a median-, and a worst-case scenario. The Mediterranean coastal areas of Southern Europe resulted particularly suitable for the establishment of the species, with suitable areas reaching even higher latitudes, in the worst-case scenario. In Europe, up to four generations per year were predicted. The predicted yearly average number of moths per trap per week (± standard deviation) was 5 (± 4), 17 (± 5), and 139 (± 22) in the best, median-, and worst-case assessment scenarios, respectively. Model results showed that Southern and Central Europe up to the 48th parallel north might be exposed to the risk of transient populations. Depending on the latitude and on the period of arrival of the propagule, 1–2 transient generations per year might be expected. The model can be used to define strategies for reducing the risks of establishment of the pest at the country level. Predictions on the dynamics and phenology of the pest can also be used to support its management at the local level.
Assessing the risk of establishment and transient populations of Spodoptera frugiperda in Europe
Gianni Gilioli
;Giorgio Sperandio;Anna Simonetto;Paola Gervasio
2022-01-01
Abstract
The fall armyworm, Spodoptera frugiperda (J.E. Smith), is an invasive pest threatening crop production and food security worldwide. High concerns are linked to the potential establishment of the species in Europe. The high migratory capacity of S. frugiperda causes concerns about the potential impacts of transient populations invading new areas from suitable hotspots. In the present work, we developed and used a physiologically-based demographic model to quantitatively assess the risks of S. frugiperda in Europe. The risks were assessed considering a best-, a median-, and a worst-case scenario. The Mediterranean coastal areas of Southern Europe resulted particularly suitable for the establishment of the species, with suitable areas reaching even higher latitudes, in the worst-case scenario. In Europe, up to four generations per year were predicted. The predicted yearly average number of moths per trap per week (± standard deviation) was 5 (± 4), 17 (± 5), and 139 (± 22) in the best, median-, and worst-case assessment scenarios, respectively. Model results showed that Southern and Central Europe up to the 48th parallel north might be exposed to the risk of transient populations. Depending on the latitude and on the period of arrival of the propagule, 1–2 transient generations per year might be expected. The model can be used to define strategies for reducing the risks of establishment of the pest at the country level. Predictions on the dynamics and phenology of the pest can also be used to support its management at the local level.File | Dimensione | Formato | |
---|---|---|---|
Gilioli2022_Article_AssessingTheRiskOfEstablishmen.pdf
accesso aperto
Tipologia:
Full Text
Licenza:
PUBBLICO - Creative Commons 4.0
Dimensione
2.8 MB
Formato
Adobe PDF
|
2.8 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.