Objective To detect the presence of microorganisms in the storage media of human donor corneas using next-generation sequencing method. Methods Seven samples from organ culture (OC) group (Cornea Max, Eurobio, Les Ulis, France) with one control (sterile media without any cornea) and seven samples from hypothermic storage group (Cornea Cold, Eurobio) with one control were used for this study. The corneas were placed in the respective storage media for 14 days before collecting the samples. Storage media (2 mL) from each sample were collected in RNAase-free tubes and shipped for ribosomal RNA sequencing of 16 S and 18 S. Simultaneously, another 1 mL of media sample was used for conventional diagnostic method (CDM) using Bactec instruments. Results In both, OC and hypothermic storage and control samples, the most abundant genera were Pseudomonas, Comamonas, Stenotrophomonas, Alcanivorax, Brevundimonas and Nitrobacter. Acidovorax, Acetobacter and Hydrogenophilus were detected mostly in the hypothermic storage group. The most abundant fungal pathogen detected belonged to the genus Malassezia, which was found in both the storage conditions. CDM was negative for microorganisms in all the samples. Conclusion Metagenomics provides full taxonomic profiling of the detected genomic material of the organisms and thus has the potential to deliver a much wider microbiological diagnostic approach than CDM. The costs and turn-around time need to be reduced, and; the detection of viable organisms would help this technology to be introduced into routine clinical practice.

Next-generation sequencing for the detection of microorganisms present in human donor corneal preservation medium

Romano V.;
2019-01-01

Abstract

Objective To detect the presence of microorganisms in the storage media of human donor corneas using next-generation sequencing method. Methods Seven samples from organ culture (OC) group (Cornea Max, Eurobio, Les Ulis, France) with one control (sterile media without any cornea) and seven samples from hypothermic storage group (Cornea Cold, Eurobio) with one control were used for this study. The corneas were placed in the respective storage media for 14 days before collecting the samples. Storage media (2 mL) from each sample were collected in RNAase-free tubes and shipped for ribosomal RNA sequencing of 16 S and 18 S. Simultaneously, another 1 mL of media sample was used for conventional diagnostic method (CDM) using Bactec instruments. Results In both, OC and hypothermic storage and control samples, the most abundant genera were Pseudomonas, Comamonas, Stenotrophomonas, Alcanivorax, Brevundimonas and Nitrobacter. Acidovorax, Acetobacter and Hydrogenophilus were detected mostly in the hypothermic storage group. The most abundant fungal pathogen detected belonged to the genus Malassezia, which was found in both the storage conditions. CDM was negative for microorganisms in all the samples. Conclusion Metagenomics provides full taxonomic profiling of the detected genomic material of the organisms and thus has the potential to deliver a much wider microbiological diagnostic approach than CDM. The costs and turn-around time need to be reduced, and; the detection of viable organisms would help this technology to be introduced into routine clinical practice.
File in questo prodotto:
File Dimensione Formato  
Next generation sequencing for the detection of microorganisms present in human donor corneal preservation medium (BMJO 2019).pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 1.63 MB
Formato Adobe PDF
1.63 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/555261
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 12
social impact