Industry 4.0 has radically been transforming the production processes and systems with the adoption of enabling technologies, such as Internet of Things (IoT), Big Data, Additive Manufacturing (AM), and Cloud Computing. The principles of these technologies can be also translated into any aspect of everyday life thanks to the usage of printed electronics (PE), offering techniques to produce unconventional sensors and systems or to make conventional objects “smart”. With PE playing a key role in the design of next-generation objects, smart objects fulfill their original function, and they can measure physical quantities in the surrounding environment, being able to communicate with other objects or remote units. Many PE technologies could be adopted, but above all, Aerosol Jet Printing (AJP) with its characteristics can be considered for such a purpose being able to print on any kind of surface a huge variety of functional materials. In combination with Flash Lamp Annealing (FLA), a low-point temperature thermal process, it is possible to complete the production of sensors and circuits on any kind of substrate. The aim of this thesis work is to identify innovative methods and processes allowing to directly embed sensors, circuits and electronics on the surface of objects and to analyze the metrological characteristics. To this end, compatibility studies have been carried out considering different materials, both in terms of substrates and inks for the realization of smart sensors and objects. Furthermore, design, fabrication and test of sensors and circuits has been analyzed in different fields. Chapter 1 will provide the background and the outline of this dissertation. Smart objects can be manufactured with numerous different technologies and materials depending on the performance required and on the specific application. The purpose of chapter 2 is to provide an analysis of 3D PE technologies that enable sensors printing on complex surfaces. First, an explanation of the technologies under consideration is provided. Then focusing on the used technologies, a deep analysis of AJP and FLA will be provided in chapter 3. Examples carried out are divided into four macro-areas, wearable devices, paper-based packaging, wet laboratories applications (cells and biomolecules sensing), to demonstrate the applicability of the proposed methodologies in the realization of sensors and smart objects. Starting from chapter 4, applicative examples will be reported. The tested prototypes were involved in different working contexts, from food industry to medical rehabilitation, passing through laboratory analysis, keeping a common trait: measuring thanks to unconventional sensors. This fact underlines the applicability of the proposed methodologies to any kind of request, giving the possibility to turn everyday objects into smart ones, thus demonstrating the flexibility of the methods identified and the pervasiveness of sensors and smart objects made this way.

L'industria 4.0 sta trasformando radicalmente i processi e i sistemi di produzione con l'adozione di tecnologie abilitanti, come l'Internet of Things (IoT), il Big Data, l'Additive Manufacturing (AM) e il Cloud Computing. I principi di queste tecnologie possono anche essere tradotti in qualsiasi aspetto della vita quotidiana grazie all'uso dell'elettronica stampata (PE), offrendo tecniche per produrre sensori e sistemi non convenzionali o per rendere "intelligenti" oggetti convenzionali. Con la PE a giocare un ruolo chiave nella progettazione di oggetti di nuova generazione, gli oggetti intelligenti adempiono alla loro funzione originale, e possono misurare quantità fisiche nell'ambiente circostante, essendo in grado di comunicare con altri oggetti o unità remote. Diverse tecnologie facenti parte della PE potrebbero essere adottate, ma soprattutto l'Aerosol Jet Printing (AJP) con le sue caratteristiche può essere considerata per tale scopo essendo in grado di stampare su qualsiasi tipo di superficie un'enorme varietà di materiali funzionali. In combinazione con il Flash Lamp Annealing (FLA), un processo termico a bassa temperatura, è possibile completare la produzione di sensori e circuiti su qualsiasi tipo di substrato. Lo scopo di questo lavoro di tesi è quello di identificare metodi e processi innovativi che permettano di incorporare direttamente sensori, circuiti ed elettronica sulla superficie degli oggetti e di analizzarne le caratteristiche metrologiche. A tal fine, sono stati effettuati studi di compatibilità considerando diversi materiali, sia in termini di substrati che di inchiostri per la realizzazione di sensori e oggetti intelligenti. Inoltre, è stata analizzata la progettazione, la fabbricazione e il test di sensori e circuiti in diversi campi. Il capitolo 1 fornirà il background e lo schema di questa tesi. Gli oggetti intelligenti possono essere fabbricati con numerose tecnologie e materiali diversi a seconda delle prestazioni richieste e dell'applicazione specifica. Lo scopo del capitolo 2 è di fornire un'analisi delle tecnologie di elettronica stampata 3D che permettono la stampa di sensori su superfici complesse. In primo luogo, viene fornita una spiegazione delle tecnologie in esame. Poi, concentrandosi sulle tecnologie utilizzate, verrà fornita un'analisi approfondita di AJP e FLA nel capitolo 3. Gli esempi svolti sono suddivisi in quattro macro-aree, dispositivi indossabili, packaging su carta, applicazioni di wet laboratory analysis (rilevamento di cellule e biomolecole), per dimostrare l'applicabilità delle metodologie proposte nella realizzazione di sensori e oggetti intelligenti. A partire dal capitolo 4 verranno riportati esempi applicativi. I prototipi testati sono stati coinvolti in diversi contesti lavorativi, dall'industria alimentare alla riabilitazione medica, passando per le analisi di laboratorio, mantenendo un tratto comune: misurare grazie a sensori non convenzionali. Questo fatto sottolinea l'applicabilità delle metodologie proposte a qualsiasi tipo di richiesta, dando la possibilità di trasformare gli oggetti quotidiani in oggetti intelligenti, dimostrando così la flessibilità dei metodi individuati e la pervasività dei sensori e degli oggetti intelligenti così realizzati.

Printed Sensors on Non-Conventional Substrates / Cantù, Edoardo. - (2022 Mar 04).

Printed Sensors on Non-Conventional Substrates

CANTÙ, EDOARDO
2022-03-04

Abstract

Industry 4.0 has radically been transforming the production processes and systems with the adoption of enabling technologies, such as Internet of Things (IoT), Big Data, Additive Manufacturing (AM), and Cloud Computing. The principles of these technologies can be also translated into any aspect of everyday life thanks to the usage of printed electronics (PE), offering techniques to produce unconventional sensors and systems or to make conventional objects “smart”. With PE playing a key role in the design of next-generation objects, smart objects fulfill their original function, and they can measure physical quantities in the surrounding environment, being able to communicate with other objects or remote units. Many PE technologies could be adopted, but above all, Aerosol Jet Printing (AJP) with its characteristics can be considered for such a purpose being able to print on any kind of surface a huge variety of functional materials. In combination with Flash Lamp Annealing (FLA), a low-point temperature thermal process, it is possible to complete the production of sensors and circuits on any kind of substrate. The aim of this thesis work is to identify innovative methods and processes allowing to directly embed sensors, circuits and electronics on the surface of objects and to analyze the metrological characteristics. To this end, compatibility studies have been carried out considering different materials, both in terms of substrates and inks for the realization of smart sensors and objects. Furthermore, design, fabrication and test of sensors and circuits has been analyzed in different fields. Chapter 1 will provide the background and the outline of this dissertation. Smart objects can be manufactured with numerous different technologies and materials depending on the performance required and on the specific application. The purpose of chapter 2 is to provide an analysis of 3D PE technologies that enable sensors printing on complex surfaces. First, an explanation of the technologies under consideration is provided. Then focusing on the used technologies, a deep analysis of AJP and FLA will be provided in chapter 3. Examples carried out are divided into four macro-areas, wearable devices, paper-based packaging, wet laboratories applications (cells and biomolecules sensing), to demonstrate the applicability of the proposed methodologies in the realization of sensors and smart objects. Starting from chapter 4, applicative examples will be reported. The tested prototypes were involved in different working contexts, from food industry to medical rehabilitation, passing through laboratory analysis, keeping a common trait: measuring thanks to unconventional sensors. This fact underlines the applicability of the proposed methodologies to any kind of request, giving the possibility to turn everyday objects into smart ones, thus demonstrating the flexibility of the methods identified and the pervasiveness of sensors and smart objects made this way.
4-mar-2022
L'industria 4.0 sta trasformando radicalmente i processi e i sistemi di produzione con l'adozione di tecnologie abilitanti, come l'Internet of Things (IoT), il Big Data, l'Additive Manufacturing (AM) e il Cloud Computing. I principi di queste tecnologie possono anche essere tradotti in qualsiasi aspetto della vita quotidiana grazie all'uso dell'elettronica stampata (PE), offrendo tecniche per produrre sensori e sistemi non convenzionali o per rendere "intelligenti" oggetti convenzionali. Con la PE a giocare un ruolo chiave nella progettazione di oggetti di nuova generazione, gli oggetti intelligenti adempiono alla loro funzione originale, e possono misurare quantità fisiche nell'ambiente circostante, essendo in grado di comunicare con altri oggetti o unità remote. Diverse tecnologie facenti parte della PE potrebbero essere adottate, ma soprattutto l'Aerosol Jet Printing (AJP) con le sue caratteristiche può essere considerata per tale scopo essendo in grado di stampare su qualsiasi tipo di superficie un'enorme varietà di materiali funzionali. In combinazione con il Flash Lamp Annealing (FLA), un processo termico a bassa temperatura, è possibile completare la produzione di sensori e circuiti su qualsiasi tipo di substrato. Lo scopo di questo lavoro di tesi è quello di identificare metodi e processi innovativi che permettano di incorporare direttamente sensori, circuiti ed elettronica sulla superficie degli oggetti e di analizzarne le caratteristiche metrologiche. A tal fine, sono stati effettuati studi di compatibilità considerando diversi materiali, sia in termini di substrati che di inchiostri per la realizzazione di sensori e oggetti intelligenti. Inoltre, è stata analizzata la progettazione, la fabbricazione e il test di sensori e circuiti in diversi campi. Il capitolo 1 fornirà il background e lo schema di questa tesi. Gli oggetti intelligenti possono essere fabbricati con numerose tecnologie e materiali diversi a seconda delle prestazioni richieste e dell'applicazione specifica. Lo scopo del capitolo 2 è di fornire un'analisi delle tecnologie di elettronica stampata 3D che permettono la stampa di sensori su superfici complesse. In primo luogo, viene fornita una spiegazione delle tecnologie in esame. Poi, concentrandosi sulle tecnologie utilizzate, verrà fornita un'analisi approfondita di AJP e FLA nel capitolo 3. Gli esempi svolti sono suddivisi in quattro macro-aree, dispositivi indossabili, packaging su carta, applicazioni di wet laboratory analysis (rilevamento di cellule e biomolecole), per dimostrare l'applicabilità delle metodologie proposte nella realizzazione di sensori e oggetti intelligenti. A partire dal capitolo 4 verranno riportati esempi applicativi. I prototipi testati sono stati coinvolti in diversi contesti lavorativi, dall'industria alimentare alla riabilitazione medica, passando per le analisi di laboratorio, mantenendo un tratto comune: misurare grazie a sensori non convenzionali. Questo fatto sottolinea l'applicabilità delle metodologie proposte a qualsiasi tipo di richiesta, dando la possibilità di trasformare gli oggetti quotidiani in oggetti intelligenti, dimostrando così la flessibilità dei metodi individuati e la pervasività dei sensori e degli oggetti intelligenti così realizzati.
Printed Sensors on Non-Conventional Substrates / Cantù, Edoardo. - (2022 Mar 04).
File in questo prodotto:
File Dimensione Formato  
PHD THESIS EDOARDO CANTU?.pdf

accesso aperto

Descrizione: TESI
Tipologia: Tesi di dottorato
Dimensione 35.19 MB
Formato Adobe PDF
35.19 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/554976
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact