We derive a simple proof, based on information theoretic inequalities, of an upper bound on the largest rates of q-ary 2‾-separable codes that improves recent results of Wang for any q≥13. For the case q=2, we recover a result of Lindström, but with a much simpler derivation. The method easily extends to give bounds on B2 codes which, although not improving on Wang's results, use much simpler tools and might be useful for future applications.

A note on 2‾-separable codes and B2 codes

Della Fiore S.;Dalai M.
2022-01-01

Abstract

We derive a simple proof, based on information theoretic inequalities, of an upper bound on the largest rates of q-ary 2‾-separable codes that improves recent results of Wang for any q≥13. For the case q=2, we recover a result of Lindström, but with a much simpler derivation. The method easily extends to give bounds on B2 codes which, although not improving on Wang's results, use much simpler tools and might be useful for future applications.
File in questo prodotto:
File Dimensione Formato  
DFD-DM-2022.pdf

gestori archivio

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 227.5 kB
Formato Adobe PDF
227.5 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/554846
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 1
social impact