We revise the proof of low-rate upper bounds on the reliability function of discrete memoryless channels for ordinary and list-decoding schemes, in particular Berlekamp and Blinovsky’s zero-rate bound, as well as Blahut’s bound for low rates. The available proofs of the zero-rate bound devised by Berlekamp and Blinovsky are somehow complicated in that they contain in one form or another some “non-standard” procedures or computations. Here we follow Blinovsky’s idea of using a Ramsey-theoretic result by Komlós, and we complement it with some missing steps to present a proof which is rigorous and easier to inspect. Furthermore, we show how these techniques can be used to fix an error that invalidated the proof of Blahut’s low-rate bound, which is here presented in an extended form for list decoding and for general channels.

A Revisitation of Low-Rate Bounds on the Reliability Function of Discrete Memoryless Channels for List Decoding

Bondaschi M.;Dalai M.
2022-01-01

Abstract

We revise the proof of low-rate upper bounds on the reliability function of discrete memoryless channels for ordinary and list-decoding schemes, in particular Berlekamp and Blinovsky’s zero-rate bound, as well as Blahut’s bound for low rates. The available proofs of the zero-rate bound devised by Berlekamp and Blinovsky are somehow complicated in that they contain in one form or another some “non-standard” procedures or computations. Here we follow Blinovsky’s idea of using a Ramsey-theoretic result by Komlós, and we complement it with some missing steps to present a proof which is rigorous and easier to inspect. Furthermore, we show how these techniques can be used to fix an error that invalidated the proof of Blahut’s low-rate bound, which is here presented in an extended form for list decoding and for general channels.
File in questo prodotto:
File Dimensione Formato  
DB_2021.pdf

gestori archivio

Descrizione: VoR
Tipologia: Full Text
Licenza: Copyright dell'editore
Dimensione 260.5 kB
Formato Adobe PDF
260.5 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1912.04411v3.pdf

accesso aperto

Descrizione: AAM
Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 203.48 kB
Formato Adobe PDF
203.48 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/554844
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact