Abstract: A simple low-cost method to enhance the electrical properties including open-circuit voltage (VOC), flat-band potential (Vfb) and short-circuit current (ISC) in the photoelectrochemical (PEC) cell of cadmium sulfide (CdS) thin films is presented. The PEC cell properties were determined using the configuration Pt/0.1 M Na2S2O3/CdS. Three different sets of CdS thin films were grown: (a) chemical bath-deposited CdS (CBD-CdS), (b) electrodeposited seed-assisted CBD-CdS (ED/CBD-CdS) and (c) ED/CBD-CdS deposited under the presence of ethylenediaminetetraacetic acid (EDTA) in a reaction solution of CBD (ED/(CBD+EDTA)-CdS). The FE-SEM images suggested the formation of clusters with spherical shape in the presence of a seed layer. All the samples grown with seed layers demonstrated improved ISC and VOC values in the PEC cell compared to the CBD-CdS films due to better contact between the substrate and CBD-CdS. Furthermore, the carrier concentration (ND) and Vfb were also found to improve due to the introduction of the seed layer. In the case of ED/(CBD+EDTA)-CdS, the cluster size was found to be smaller, giving rise to a larger effective surface area. The improved effective surface area, interparticle connections and adhesion of CdS to the FTO substrate resulted in superior electrical properties of ED/(CBD+EDTA)-CdS compared to ED/CBD-CdS and CBD-CdS films. Graphical Abstract: [Figure not available: see fulltext.]

Growth and Characterization of Seed-Assisted, EDTA-Treated, Chemical Bath-Deposited CdS

Kaur N.;Comini E.;
2021-01-01

Abstract

Abstract: A simple low-cost method to enhance the electrical properties including open-circuit voltage (VOC), flat-band potential (Vfb) and short-circuit current (ISC) in the photoelectrochemical (PEC) cell of cadmium sulfide (CdS) thin films is presented. The PEC cell properties were determined using the configuration Pt/0.1 M Na2S2O3/CdS. Three different sets of CdS thin films were grown: (a) chemical bath-deposited CdS (CBD-CdS), (b) electrodeposited seed-assisted CBD-CdS (ED/CBD-CdS) and (c) ED/CBD-CdS deposited under the presence of ethylenediaminetetraacetic acid (EDTA) in a reaction solution of CBD (ED/(CBD+EDTA)-CdS). The FE-SEM images suggested the formation of clusters with spherical shape in the presence of a seed layer. All the samples grown with seed layers demonstrated improved ISC and VOC values in the PEC cell compared to the CBD-CdS films due to better contact between the substrate and CBD-CdS. Furthermore, the carrier concentration (ND) and Vfb were also found to improve due to the introduction of the seed layer. In the case of ED/(CBD+EDTA)-CdS, the cluster size was found to be smaller, giving rise to a larger effective surface area. The improved effective surface area, interparticle connections and adhesion of CdS to the FTO substrate resulted in superior electrical properties of ED/(CBD+EDTA)-CdS compared to ED/CBD-CdS and CBD-CdS films. Graphical Abstract: [Figure not available: see fulltext.]
File in questo prodotto:
File Dimensione Formato  
Kumarage2021_Article_GrowthAndCharacterizationOfSee.pdf

gestori archivio

Tipologia: Full Text
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.22 MB
Formato Adobe PDF
1.22 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/554831
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact