The clinical picture of acetate intolerance strictly mimics the nitric oxide (NO) effect, including smooth muscle relaxation and extreme vasodilation. Because acetate induces production of cAMP, which is a powerful stimulus of NO synthase (NOS), we evaluated the effect of different dialysate solutions with and without acetate on NOS activity in endothelial cells (EC). NOS activity of EC, evaluated as H3-citrulline produced from H3-arginine, was modulated by the dialysate composition (e.g., 38 mmol/L acetate produced an increase of 3.2 +/- 0.39-fold compared with basal values (P < 0.0005), and the small amount of acetate (4 mmol/L) in 35 mmol/L bicarbonate solution increased the NOS activity by 2 +/- 0.49-fold (P < 0.05). Conversely, the acetate-free solution produced no effect on NOS activity. The mRNA encoding for inducible NOS was highly expressed in EC incubated with acetate buffer and also with acetate in bicarbonate dialysis buffer. The EC proliferative index was depressed by acetate (P < 0.0005), and tumor necrosis factor synthesis was increased (P < 0.0005) compared with acetate-free buffer. This study suggests that dialytic "acetate intolerance" can be induced by the activation, through cAMP and tumor necrosis factor release, of NOS. The small amount of acetate in bicarbonate dialysate, although capable of inducing in vitro NOS activation, is likely to be rapidly metabolized, whereas the large amounts of this anion in acetate fluids overwhelm metabolism by the liver. Acetate-free dialysate is the only solution that provides an acceptable level of biocompatibility both in vivo and in vitro.

Acetate intolerance is mediated by enhanced synthesis of nitric oxide by endothelial cells.

MITOLA, Stefania Maria Filomena;
1997-01-01

Abstract

The clinical picture of acetate intolerance strictly mimics the nitric oxide (NO) effect, including smooth muscle relaxation and extreme vasodilation. Because acetate induces production of cAMP, which is a powerful stimulus of NO synthase (NOS), we evaluated the effect of different dialysate solutions with and without acetate on NOS activity in endothelial cells (EC). NOS activity of EC, evaluated as H3-citrulline produced from H3-arginine, was modulated by the dialysate composition (e.g., 38 mmol/L acetate produced an increase of 3.2 +/- 0.39-fold compared with basal values (P < 0.0005), and the small amount of acetate (4 mmol/L) in 35 mmol/L bicarbonate solution increased the NOS activity by 2 +/- 0.49-fold (P < 0.05). Conversely, the acetate-free solution produced no effect on NOS activity. The mRNA encoding for inducible NOS was highly expressed in EC incubated with acetate buffer and also with acetate in bicarbonate dialysis buffer. The EC proliferative index was depressed by acetate (P < 0.0005), and tumor necrosis factor synthesis was increased (P < 0.0005) compared with acetate-free buffer. This study suggests that dialytic "acetate intolerance" can be induced by the activation, through cAMP and tumor necrosis factor release, of NOS. The small amount of acetate in bicarbonate dialysate, although capable of inducing in vitro NOS activation, is likely to be rapidly metabolized, whereas the large amounts of this anion in acetate fluids overwhelm metabolism by the liver. Acetate-free dialysate is the only solution that provides an acceptable level of biocompatibility both in vivo and in vitro.
File in questo prodotto:
File Dimensione Formato  
1997 JASN.pdf

accesso aperto

Tipologia: Full Text
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/5540
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 68
  • ???jsp.display-item.citation.isi??? 64
social impact