Lead iodide (PbI2) is a van der Waals layered semiconductor with a direct bandgap in its bulk form and a hexagonal layered crystalline structure. The recently developed PbI2 nanosheets have shown great promise for high-performance optoelectronic devices, including nanolasers and photodetectors. However, despite being widely used as a precursor for perovskite materials, the optical properties of PbI2 nanomaterials remain largely unexplored. Here, we determine the nonlinear optical properties of PbI2 nanosheets by utilising nonlinear microscopy as a non-invasive optical technique. We demonstrate the nonlinearity enhancement dependent on excitonic resonances, crystalline orientation, thickness, and influence of the substrate. Our results allow for estimating the second- and third-order nonlinear susceptibilities of the nanosheets, opening new opportunities for the use of PbI2 nanosheets as nonlinear and quantum light sources.

Nonlinear microscopy of lead iodide nanosheets

Vincenti M. A.;de Angelis C.;
2022-01-01

Abstract

Lead iodide (PbI2) is a van der Waals layered semiconductor with a direct bandgap in its bulk form and a hexagonal layered crystalline structure. The recently developed PbI2 nanosheets have shown great promise for high-performance optoelectronic devices, including nanolasers and photodetectors. However, despite being widely used as a precursor for perovskite materials, the optical properties of PbI2 nanomaterials remain largely unexplored. Here, we determine the nonlinear optical properties of PbI2 nanosheets by utilising nonlinear microscopy as a non-invasive optical technique. We demonstrate the nonlinearity enhancement dependent on excitonic resonances, crystalline orientation, thickness, and influence of the substrate. Our results allow for estimating the second- and third-order nonlinear susceptibilities of the nanosheets, opening new opportunities for the use of PbI2 nanosheets as nonlinear and quantum light sources.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/553983
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact