In this work, the moldability via micro-injection molding (mu-IM) of nano-filled polyamide 6 (PA6) based systems and the microstructural characteristics of the micro-injected parts were investigated and compared to those observed via traditional injection molding (IM). Two types of nano-fillers, different in nature and geometry, were examined, namely carbon nanotubes and silicate layers. The presence of nano-fillers did not impair the mold replication capability of PA6 in the mu-IM process. A micro-rib and a standard dumbbell specimen for tensile tests were used as reference micro- and macro-injected part, respectively. Transmission Electron Microscopy, Wide and Small Angle X-ray Scattering and Differential Scanning Calorimetry analyses showed that, due to the different thermomechanical histories during mu-IM and IM, the micro- and the macro-parts have different microstructures, influenced also by the filler type. Both nano-filler dispersion and PA6 crystallinity were influenced.

Injection vs micro-injection molding of nano-particle filled polyamide 6: Moldability and structuring

Irene Fassi;Francesco Baldi
2021-01-01

Abstract

In this work, the moldability via micro-injection molding (mu-IM) of nano-filled polyamide 6 (PA6) based systems and the microstructural characteristics of the micro-injected parts were investigated and compared to those observed via traditional injection molding (IM). Two types of nano-fillers, different in nature and geometry, were examined, namely carbon nanotubes and silicate layers. The presence of nano-fillers did not impair the mold replication capability of PA6 in the mu-IM process. A micro-rib and a standard dumbbell specimen for tensile tests were used as reference micro- and macro-injected part, respectively. Transmission Electron Microscopy, Wide and Small Angle X-ray Scattering and Differential Scanning Calorimetry analyses showed that, due to the different thermomechanical histories during mu-IM and IM, the micro- and the macro-parts have different microstructures, influenced also by the filler type. Both nano-filler dispersion and PA6 crystallinity were influenced.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/551138
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact